Spaces:
Running
Running
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
from torch.optim import lr_scheduler | |
from torch.optim import Adam | |
from models.select_network import define_G, define_D | |
from models.model_base import ModelBase | |
from models.loss import GANLoss, PerceptualLoss | |
from models.loss_ssim import SSIMLoss | |
class ModelGAN(ModelBase): | |
"""Train with pixel-VGG-GAN loss""" | |
def __init__(self, opt): | |
super(ModelGAN, self).__init__(opt) | |
# ------------------------------------ | |
# define network | |
# ------------------------------------ | |
self.opt_train = self.opt['train'] # training option | |
self.netG = define_G(opt) | |
self.netG = self.model_to_device(self.netG) | |
if self.is_train: | |
self.netD = define_D(opt) | |
self.netD = self.model_to_device(self.netD) | |
if self.opt_train['E_decay'] > 0: | |
self.netE = define_G(opt).to(self.device).eval() | |
""" | |
# ---------------------------------------- | |
# Preparation before training with data | |
# Save model during training | |
# ---------------------------------------- | |
""" | |
# ---------------------------------------- | |
# initialize training | |
# ---------------------------------------- | |
def init_train(self): | |
self.load() # load model | |
self.netG.train() # set training mode,for BN | |
self.netD.train() # set training mode,for BN | |
self.define_loss() # define loss | |
self.define_optimizer() # define optimizer | |
self.load_optimizers() # load optimizer | |
self.define_scheduler() # define scheduler | |
self.log_dict = OrderedDict() # log | |
# ---------------------------------------- | |
# load pre-trained G and D model | |
# ---------------------------------------- | |
def load(self): | |
load_path_G = self.opt['path']['pretrained_netG'] | |
if load_path_G is not None: | |
print('Loading model for G [{:s}] ...'.format(load_path_G)) | |
self.load_network(load_path_G, self.netG, strict=self.opt_train['G_param_strict']) | |
load_path_E = self.opt['path']['pretrained_netE'] | |
if self.opt_train['E_decay'] > 0: | |
if load_path_E is not None: | |
print('Loading model for E [{:s}] ...'.format(load_path_E)) | |
self.load_network(load_path_E, self.netE, strict=self.opt_train['E_param_strict']) | |
else: | |
print('Copying model for E') | |
self.update_E(0) | |
self.netE.eval() | |
load_path_D = self.opt['path']['pretrained_netD'] | |
if self.opt['is_train'] and load_path_D is not None: | |
print('Loading model for D [{:s}] ...'.format(load_path_D)) | |
self.load_network(load_path_D, self.netD, strict=self.opt_train['D_param_strict']) | |
# ---------------------------------------- | |
# load optimizerG and optimizerD | |
# ---------------------------------------- | |
def load_optimizers(self): | |
load_path_optimizerG = self.opt['path']['pretrained_optimizerG'] | |
if load_path_optimizerG is not None and self.opt_train['G_optimizer_reuse']: | |
print('Loading optimizerG [{:s}] ...'.format(load_path_optimizerG)) | |
self.load_optimizer(load_path_optimizerG, self.G_optimizer) | |
load_path_optimizerD = self.opt['path']['pretrained_optimizerD'] | |
if load_path_optimizerD is not None and self.opt_train['D_optimizer_reuse']: | |
print('Loading optimizerD [{:s}] ...'.format(load_path_optimizerD)) | |
self.load_optimizer(load_path_optimizerD, self.D_optimizer) | |
# ---------------------------------------- | |
# save model / optimizer(optional) | |
# ---------------------------------------- | |
def save(self, iter_label): | |
self.save_network(self.save_dir, self.netG, 'G', iter_label) | |
self.save_network(self.save_dir, self.netD, 'D', iter_label) | |
if self.opt_train['E_decay'] > 0: | |
self.save_network(self.save_dir, self.netE, 'E', iter_label) | |
if self.opt_train['G_optimizer_reuse']: | |
self.save_optimizer(self.save_dir, self.G_optimizer, 'optimizerG', iter_label) | |
if self.opt_train['D_optimizer_reuse']: | |
self.save_optimizer(self.save_dir, self.D_optimizer, 'optimizerD', iter_label) | |
# ---------------------------------------- | |
# define loss | |
# ---------------------------------------- | |
def define_loss(self): | |
# ------------------------------------ | |
# 1) G_loss | |
# ------------------------------------ | |
if self.opt_train['G_lossfn_weight'] > 0: | |
G_lossfn_type = self.opt_train['G_lossfn_type'] | |
if G_lossfn_type == 'l1': | |
self.G_lossfn = nn.L1Loss().to(self.device) | |
elif G_lossfn_type == 'l2': | |
self.G_lossfn = nn.MSELoss().to(self.device) | |
elif G_lossfn_type == 'l2sum': | |
self.G_lossfn = nn.MSELoss(reduction='sum').to(self.device) | |
elif G_lossfn_type == 'ssim': | |
self.G_lossfn = SSIMLoss().to(self.device) | |
else: | |
raise NotImplementedError('Loss type [{:s}] is not found.'.format(G_lossfn_type)) | |
self.G_lossfn_weight = self.opt_train['G_lossfn_weight'] | |
else: | |
print('Do not use pixel loss.') | |
self.G_lossfn = None | |
# ------------------------------------ | |
# 2) F_loss | |
# ------------------------------------ | |
if self.opt_train['F_lossfn_weight'] > 0: | |
F_feature_layer = self.opt_train['F_feature_layer'] | |
F_weights = self.opt_train['F_weights'] | |
F_lossfn_type = self.opt_train['F_lossfn_type'] | |
F_use_input_norm = self.opt_train['F_use_input_norm'] | |
F_use_range_norm = self.opt_train['F_use_range_norm'] | |
if self.opt['dist']: | |
self.F_lossfn = PerceptualLoss(feature_layer=F_feature_layer, weights=F_weights, lossfn_type=F_lossfn_type, use_input_norm=F_use_input_norm, use_range_norm=F_use_range_norm).to(self.device) | |
else: | |
self.F_lossfn = PerceptualLoss(feature_layer=F_feature_layer, weights=F_weights, lossfn_type=F_lossfn_type, use_input_norm=F_use_input_norm, use_range_norm=F_use_range_norm) | |
self.F_lossfn.vgg = self.model_to_device(self.F_lossfn.vgg) | |
self.F_lossfn.lossfn = self.F_lossfn.lossfn.to(self.device) | |
self.F_lossfn_weight = self.opt_train['F_lossfn_weight'] | |
else: | |
print('Do not use feature loss.') | |
self.F_lossfn = None | |
# ------------------------------------ | |
# 3) D_loss | |
# ------------------------------------ | |
self.D_lossfn = GANLoss(self.opt_train['gan_type'], 1.0, 0.0).to(self.device) | |
self.D_lossfn_weight = self.opt_train['D_lossfn_weight'] | |
self.D_update_ratio = self.opt_train['D_update_ratio'] if self.opt_train['D_update_ratio'] else 1 | |
self.D_init_iters = self.opt_train['D_init_iters'] if self.opt_train['D_init_iters'] else 0 | |
# ---------------------------------------- | |
# define optimizer, G and D | |
# ---------------------------------------- | |
def define_optimizer(self): | |
G_optim_params = [] | |
for k, v in self.netG.named_parameters(): | |
if v.requires_grad: | |
G_optim_params.append(v) | |
else: | |
print('Params [{:s}] will not optimize.'.format(k)) | |
self.G_optimizer = Adam(G_optim_params, lr=self.opt_train['G_optimizer_lr'], weight_decay=0) | |
self.D_optimizer = Adam(self.netD.parameters(), lr=self.opt_train['D_optimizer_lr'], weight_decay=0) | |
# ---------------------------------------- | |
# define scheduler, only "MultiStepLR" | |
# ---------------------------------------- | |
def define_scheduler(self): | |
self.schedulers.append(lr_scheduler.MultiStepLR(self.G_optimizer, | |
self.opt_train['G_scheduler_milestones'], | |
self.opt_train['G_scheduler_gamma'] | |
)) | |
self.schedulers.append(lr_scheduler.MultiStepLR(self.D_optimizer, | |
self.opt_train['D_scheduler_milestones'], | |
self.opt_train['D_scheduler_gamma'] | |
)) | |
""" | |
# ---------------------------------------- | |
# Optimization during training with data | |
# Testing/evaluation | |
# ---------------------------------------- | |
""" | |
# ---------------------------------------- | |
# feed L/H data | |
# ---------------------------------------- | |
def feed_data(self, data, need_H=True): | |
self.L = data['L'].to(self.device) | |
if need_H: | |
self.H = data['H'].to(self.device) | |
# ---------------------------------------- | |
# feed L to netG and get E | |
# ---------------------------------------- | |
def netG_forward(self): | |
self.E = self.netG(self.L) | |
# ---------------------------------------- | |
# update parameters and get loss | |
# ---------------------------------------- | |
def optimize_parameters(self, current_step): | |
# ------------------------------------ | |
# optimize G | |
# ------------------------------------ | |
for p in self.netD.parameters(): | |
p.requires_grad = False | |
self.G_optimizer.zero_grad() | |
self.netG_forward() | |
loss_G_total = 0 | |
if current_step % self.D_update_ratio == 0 and current_step > self.D_init_iters: # updata D first | |
if self.opt_train['G_lossfn_weight'] > 0: | |
G_loss = self.G_lossfn_weight * self.G_lossfn(self.E, self.H) | |
loss_G_total += G_loss # 1) pixel loss | |
if self.opt_train['F_lossfn_weight'] > 0: | |
F_loss = self.F_lossfn_weight * self.F_lossfn(self.E, self.H) | |
loss_G_total += F_loss # 2) VGG feature loss | |
if self.opt['train']['gan_type'] in ['gan', 'lsgan', 'wgan', 'softplusgan']: | |
pred_g_fake = self.netD(self.E) | |
D_loss = self.D_lossfn_weight * self.D_lossfn(pred_g_fake, True) | |
elif self.opt['train']['gan_type'] == 'ragan': | |
pred_d_real = self.netD(self.H).detach() | |
pred_g_fake = self.netD(self.E) | |
D_loss = self.D_lossfn_weight * ( | |
self.D_lossfn(pred_d_real - torch.mean(pred_g_fake, 0, True), False) + | |
self.D_lossfn(pred_g_fake - torch.mean(pred_d_real, 0, True), True)) / 2 | |
loss_G_total += D_loss # 3) GAN loss | |
loss_G_total.backward() | |
self.G_optimizer.step() | |
# ------------------------------------ | |
# optimize D | |
# ------------------------------------ | |
for p in self.netD.parameters(): | |
p.requires_grad = True | |
self.D_optimizer.zero_grad() | |
# In order to avoid the error in distributed training: | |
# "Error detected in CudnnBatchNormBackward: RuntimeError: one of | |
# the variables needed for gradient computation has been modified by | |
# an inplace operation", | |
# we separate the backwards for real and fake, and also detach the | |
# tensor for calculating mean. | |
if self.opt_train['gan_type'] in ['gan', 'lsgan', 'wgan', 'softplusgan']: | |
# real | |
pred_d_real = self.netD(self.H) # 1) real data | |
l_d_real = self.D_lossfn(pred_d_real, True) | |
l_d_real.backward() | |
# fake | |
pred_d_fake = self.netD(self.E.detach().clone()) # 2) fake data, detach to avoid BP to G | |
l_d_fake = self.D_lossfn(pred_d_fake, False) | |
l_d_fake.backward() | |
elif self.opt_train['gan_type'] == 'ragan': | |
# real | |
pred_d_fake = self.netD(self.E).detach() # 1) fake data, detach to avoid BP to G | |
pred_d_real = self.netD(self.H) # 2) real data | |
l_d_real = 0.5 * self.D_lossfn(pred_d_real - torch.mean(pred_d_fake, 0, True), True) | |
l_d_real.backward() | |
# fake | |
pred_d_fake = self.netD(self.E.detach()) | |
l_d_fake = 0.5 * self.D_lossfn(pred_d_fake - torch.mean(pred_d_real.detach(), 0, True), False) | |
l_d_fake.backward() | |
self.D_optimizer.step() | |
# ------------------------------------ | |
# record log | |
# ------------------------------------ | |
if current_step % self.D_update_ratio == 0 and current_step > self.D_init_iters: | |
if self.opt_train['G_lossfn_weight'] > 0: | |
self.log_dict['G_loss'] = G_loss.item() | |
if self.opt_train['F_lossfn_weight'] > 0: | |
self.log_dict['F_loss'] = F_loss.item() | |
self.log_dict['D_loss'] = D_loss.item() | |
#self.log_dict['l_d_real'] = l_d_real.item() | |
#self.log_dict['l_d_fake'] = l_d_fake.item() | |
self.log_dict['D_real'] = torch.mean(pred_d_real.detach()) | |
self.log_dict['D_fake'] = torch.mean(pred_d_fake.detach()) | |
if self.opt_train['E_decay'] > 0: | |
self.update_E(self.opt_train['E_decay']) | |
# ---------------------------------------- | |
# test and inference | |
# ---------------------------------------- | |
def test(self): | |
self.netG.eval() | |
with torch.no_grad(): | |
self.netG_forward() | |
self.netG.train() | |
# ---------------------------------------- | |
# get log_dict | |
# ---------------------------------------- | |
def current_log(self): | |
return self.log_dict | |
# ---------------------------------------- | |
# get L, E, H images | |
# ---------------------------------------- | |
def current_visuals(self, need_H=True): | |
out_dict = OrderedDict() | |
out_dict['L'] = self.L.detach()[0].float().cpu() | |
out_dict['E'] = self.E.detach()[0].float().cpu() | |
if need_H: | |
out_dict['H'] = self.H.detach()[0].float().cpu() | |
return out_dict | |
""" | |
# ---------------------------------------- | |
# Information of netG, netD and netF | |
# ---------------------------------------- | |
""" | |
# ---------------------------------------- | |
# print network | |
# ---------------------------------------- | |
def print_network(self): | |
msg = self.describe_network(self.netG) | |
print(msg) | |
if self.is_train: | |
msg = self.describe_network(self.netD) | |
print(msg) | |
# ---------------------------------------- | |
# print params | |
# ---------------------------------------- | |
def print_params(self): | |
msg = self.describe_params(self.netG) | |
print(msg) | |
# ---------------------------------------- | |
# network information | |
# ---------------------------------------- | |
def info_network(self): | |
msg = self.describe_network(self.netG) | |
if self.is_train: | |
msg += self.describe_network(self.netD) | |
return msg | |
# ---------------------------------------- | |
# params information | |
# ---------------------------------------- | |
def info_params(self): | |
msg = self.describe_params(self.netG) | |
return msg | |