cooperll
LambdaSuperRes initial commit
2514fb4
import torch
import torch.nn as nn
import torchvision
from torch.nn import functional as F
from torch import autograd as autograd
"""
Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace)
(2*): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace)
(7*): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace)
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace)
(16*): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU(inplace)
(18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace)
(23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(24): ReLU(inplace)
(25*): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(26): ReLU(inplace)
(27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace)
(30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(31): ReLU(inplace)
(32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(33): ReLU(inplace)
(34*): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): ReLU(inplace)
(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
"""
# --------------------------------------------
# Perceptual loss
# --------------------------------------------
class VGGFeatureExtractor(nn.Module):
def __init__(self, feature_layer=[2,7,16,25,34], use_input_norm=True, use_range_norm=False):
super(VGGFeatureExtractor, self).__init__()
'''
use_input_norm: If True, x: [0, 1] --> (x - mean) / std
use_range_norm: If True, x: [0, 1] --> x: [-1, 1]
'''
model = torchvision.models.vgg19(pretrained=True)
self.use_input_norm = use_input_norm
self.use_range_norm = use_range_norm
if self.use_input_norm:
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
self.register_buffer('mean', mean)
self.register_buffer('std', std)
self.list_outputs = isinstance(feature_layer, list)
if self.list_outputs:
self.features = nn.Sequential()
feature_layer = [-1] + feature_layer
for i in range(len(feature_layer)-1):
self.features.add_module('child'+str(i), nn.Sequential(*list(model.features.children())[(feature_layer[i]+1):(feature_layer[i+1]+1)]))
else:
self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)])
print(self.features)
# No need to BP to variable
for k, v in self.features.named_parameters():
v.requires_grad = False
def forward(self, x):
if self.use_range_norm:
x = (x + 1.0) / 2.0
if self.use_input_norm:
x = (x - self.mean) / self.std
if self.list_outputs:
output = []
for child_model in self.features.children():
x = child_model(x)
output.append(x.clone())
return output
else:
return self.features(x)
class PerceptualLoss(nn.Module):
"""VGG Perceptual loss
"""
def __init__(self, feature_layer=[2,7,16,25,34], weights=[0.1,0.1,1.0,1.0,1.0], lossfn_type='l1', use_input_norm=True, use_range_norm=False):
super(PerceptualLoss, self).__init__()
self.vgg = VGGFeatureExtractor(feature_layer=feature_layer, use_input_norm=use_input_norm, use_range_norm=use_range_norm)
self.lossfn_type = lossfn_type
self.weights = weights
if self.lossfn_type == 'l1':
self.lossfn = nn.L1Loss()
else:
self.lossfn = nn.MSELoss()
print(f'feature_layer: {feature_layer} with weights: {weights}')
def forward(self, x, gt):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
x_vgg, gt_vgg = self.vgg(x), self.vgg(gt.detach())
loss = 0.0
if isinstance(x_vgg, list):
n = len(x_vgg)
for i in range(n):
loss += self.weights[i] * self.lossfn(x_vgg[i], gt_vgg[i])
else:
loss += self.lossfn(x_vgg, gt_vgg.detach())
return loss
# --------------------------------------------
# GAN loss: gan, ragan
# --------------------------------------------
class GANLoss(nn.Module):
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0):
super(GANLoss, self).__init__()
self.gan_type = gan_type.lower()
self.real_label_val = real_label_val
self.fake_label_val = fake_label_val
if self.gan_type == 'gan' or self.gan_type == 'ragan':
self.loss = nn.BCEWithLogitsLoss()
elif self.gan_type == 'lsgan':
self.loss = nn.MSELoss()
elif self.gan_type == 'wgan':
def wgan_loss(input, target):
# target is boolean
return -1 * input.mean() if target else input.mean()
self.loss = wgan_loss
elif self.gan_type == 'softplusgan':
def softplusgan_loss(input, target):
# target is boolean
return F.softplus(-input).mean() if target else F.softplus(input).mean()
self.loss = softplusgan_loss
else:
raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type))
def get_target_label(self, input, target_is_real):
if self.gan_type in ['wgan', 'softplusgan']:
return target_is_real
if target_is_real:
return torch.empty_like(input).fill_(self.real_label_val)
else:
return torch.empty_like(input).fill_(self.fake_label_val)
def forward(self, input, target_is_real):
target_label = self.get_target_label(input, target_is_real)
loss = self.loss(input, target_label)
return loss
# --------------------------------------------
# TV loss
# --------------------------------------------
class TVLoss(nn.Module):
def __init__(self, tv_loss_weight=1):
"""
Total variation loss
https://github.com/jxgu1016/Total_Variation_Loss.pytorch
Args:
tv_loss_weight (int):
"""
super(TVLoss, self).__init__()
self.tv_loss_weight = tv_loss_weight
def forward(self, x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self.tensor_size(x[:, :, 1:, :])
count_w = self.tensor_size(x[:, :, :, 1:])
h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size
@staticmethod
def tensor_size(t):
return t.size()[1] * t.size()[2] * t.size()[3]
# --------------------------------------------
# Charbonnier loss
# --------------------------------------------
class CharbonnierLoss(nn.Module):
"""Charbonnier Loss (L1)"""
def __init__(self, eps=1e-9):
super(CharbonnierLoss, self).__init__()
self.eps = eps
def forward(self, x, y):
diff = x - y
loss = torch.mean(torch.sqrt((diff * diff) + self.eps))
return loss
def r1_penalty(real_pred, real_img):
"""R1 regularization for discriminator. The core idea is to
penalize the gradient on real data alone: when the
generator distribution produces the true data distribution
and the discriminator is equal to 0 on the data manifold, the
gradient penalty ensures that the discriminator cannot create
a non-zero gradient orthogonal to the data manifold without
suffering a loss in the GAN game.
Ref:
Eq. 9 in Which training methods for GANs do actually converge.
"""
grad_real = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3])
grad = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (
path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_lengths.detach().mean(), path_mean.detach()
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
"""Calculate gradient penalty for wgan-gp.
Args:
discriminator (nn.Module): Network for the discriminator.
real_data (Tensor): Real input data.
fake_data (Tensor): Fake input data.
weight (Tensor): Weight tensor. Default: None.
Returns:
Tensor: A tensor for gradient penalty.
"""
batch_size = real_data.size(0)
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
# interpolate between real_data and fake_data
interpolates = alpha * real_data + (1. - alpha) * fake_data
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = discriminator(interpolates)
gradients = autograd.grad(
outputs=disc_interpolates,
inputs=interpolates,
grad_outputs=torch.ones_like(disc_interpolates),
create_graph=True,
retain_graph=True,
only_inputs=True)[0]
if weight is not None:
gradients = gradients * weight
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
if weight is not None:
gradients_penalty /= torch.mean(weight)
return gradients_penalty