Spaces:
Running
Running
import os.path | |
import logging | |
import re | |
import numpy as np | |
from collections import OrderedDict | |
from scipy.io import loadmat | |
import torch | |
from utils import utils_deblur | |
from utils import utils_sisr as sr | |
from utils import utils_logger | |
from utils import utils_image as util | |
from utils import utils_model | |
''' | |
Spyder (Python 3.6) | |
PyTorch 1.1.0 | |
Windows 10 or Linux | |
Kai Zhang ([email protected]) | |
github: https://github.com/cszn/KAIR | |
https://github.com/cszn/SRMD | |
@inproceedings{zhang2018learning, | |
title={Learning a single convolutional super-resolution network for multiple degradations}, | |
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, | |
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, | |
pages={3262--3271}, | |
year={2018} | |
} | |
% If you have any question, please feel free to contact with me. | |
% Kai Zhang (e-mail: [email protected]; github: https://github.com/cszn) | |
by Kai Zhang (12/Dec./2019) | |
''' | |
""" | |
# -------------------------------------------- | |
|--model_zoo # model_zoo | |
|--srmdnf_x2 # model_name, for noise-free LR image SR | |
|--srmdnf_x3 | |
|--srmdnf_x4 | |
|--srmd_x2 # model_name, for noisy LR image | |
|--srmd_x3 | |
|--srmd_x4 | |
|--testset # testsets | |
|--set5 # testset_name | |
|--srbsd68 | |
|--results # results | |
|--set5_srmdnf_x2 # result_name = testset_name + '_' + model_name | |
|--set5_srmdnf_x3 | |
|--set5_srmdnf_x4 | |
|--set5_srmd_x2 | |
|--srbsd68_srmd_x2 | |
# -------------------------------------------- | |
""" | |
def main(): | |
# ---------------------------------------- | |
# Preparation | |
# ---------------------------------------- | |
noise_level_img = 0 # default: 0, noise level for LR image | |
noise_level_model = noise_level_img # noise level for model | |
model_name = 'srmdnf_x4' # 'srmd_x2' | 'srmd_x3' | 'srmd_x4' | 'srmdnf_x2' | 'srmdnf_x3' | 'srmdnf_x4' | |
testset_name = 'set5' # test set, 'set5' | 'srbsd68' | |
sf = [int(s) for s in re.findall(r'\d+', model_name)][0] # scale factor | |
x8 = False # default: False, x8 to boost performance | |
need_degradation = True # default: True, use degradation model to generate LR image | |
show_img = False # default: False | |
srmd_pca_path = os.path.join('kernels', 'srmd_pca_matlab.mat') | |
task_current = 'sr' # 'dn' for denoising | 'sr' for super-resolution | |
n_channels = 3 # fixed | |
in_nc = 18 if 'nf' in model_name else 19 | |
nc = 128 # fixed, number of channels | |
nb = 12 # fixed, number of conv layers | |
model_pool = 'model_zoo' # fixed | |
testsets = 'testsets' # fixed | |
results = 'results' # fixed | |
result_name = testset_name + '_' + model_name | |
border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM | |
model_path = os.path.join(model_pool, model_name+'.pth') | |
# ---------------------------------------- | |
# L_path, E_path, H_path | |
# ---------------------------------------- | |
L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images | |
H_path = L_path # H_path, for High-quality images | |
E_path = os.path.join(results, result_name) # E_path, for Estimated images | |
util.mkdir(E_path) | |
if H_path == L_path: | |
need_degradation = True | |
logger_name = result_name | |
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log')) | |
logger = logging.getLogger(logger_name) | |
need_H = True if H_path is not None else False | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# ---------------------------------------- | |
# load model | |
# ---------------------------------------- | |
from models.network_srmd import SRMD as net | |
model = net(in_nc=in_nc, out_nc=n_channels, nc=nc, nb=nb, upscale=sf, act_mode='R', upsample_mode='pixelshuffle') | |
model.load_state_dict(torch.load(model_path), strict=False) | |
model.eval() | |
for k, v in model.named_parameters(): | |
v.requires_grad = False | |
model = model.to(device) | |
logger.info('Model path: {:s}'.format(model_path)) | |
number_parameters = sum(map(lambda x: x.numel(), model.parameters())) | |
logger.info('Params number: {}'.format(number_parameters)) | |
test_results = OrderedDict() | |
test_results['psnr'] = [] | |
test_results['ssim'] = [] | |
test_results['psnr_y'] = [] | |
test_results['ssim_y'] = [] | |
logger.info('model_name:{}, model sigma:{}, image sigma:{}'.format(model_name, noise_level_img, noise_level_model)) | |
logger.info(L_path) | |
L_paths = util.get_image_paths(L_path) | |
H_paths = util.get_image_paths(H_path) if need_H else None | |
# ---------------------------------------- | |
# kernel and PCA reduced feature | |
# ---------------------------------------- | |
# kernel = sr.anisotropic_Gaussian(ksize=15, theta=np.pi, l1=4, l2=4) | |
kernel = utils_deblur.fspecial('gaussian', 15, 0.01) # Gaussian kernel, delta kernel 0.01 | |
P = loadmat(srmd_pca_path)['P'] | |
degradation_vector = np.dot(P, np.reshape(kernel, (-1), order="F")) | |
if 'nf' not in model_name: # noise-free SR | |
degradation_vector = np.append(degradation_vector, noise_level_model/255.) | |
degradation_vector = torch.from_numpy(degradation_vector).view(1, -1, 1, 1).float() | |
for idx, img in enumerate(L_paths): | |
# ------------------------------------ | |
# (1) img_L | |
# ------------------------------------ | |
img_name, ext = os.path.splitext(os.path.basename(img)) | |
# logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) | |
img_L = util.imread_uint(img, n_channels=n_channels) | |
img_L = util.uint2single(img_L) | |
# degradation process, blur + bicubic downsampling + Gaussian noise | |
if need_degradation: | |
img_L = util.modcrop(img_L, sf) | |
img_L = sr.srmd_degradation(img_L, kernel, sf) # equivalent to bicubic degradation if kernel is a delta kernel | |
np.random.seed(seed=0) # for reproducibility | |
img_L += np.random.normal(0, noise_level_img/255., img_L.shape) | |
util.imshow(util.single2uint(img_L), title='LR image with noise level {}'.format(noise_level_img)) if show_img else None | |
img_L = util.single2tensor4(img_L) | |
degradation_map = degradation_vector.repeat(1, 1, img_L.size(-2), img_L.size(-1)) | |
img_L = torch.cat((img_L, degradation_map), dim=1) | |
img_L = img_L.to(device) | |
# ------------------------------------ | |
# (2) img_E | |
# ------------------------------------ | |
if not x8: | |
img_E = model(img_L) | |
else: | |
img_E = utils_model.test_mode(model, img_L, mode=3, sf=sf) | |
img_E = util.tensor2uint(img_E) | |
if need_H: | |
# -------------------------------- | |
# (3) img_H | |
# -------------------------------- | |
img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) | |
img_H = img_H.squeeze() | |
img_H = util.modcrop(img_H, sf) | |
# -------------------------------- | |
# PSNR and SSIM | |
# -------------------------------- | |
psnr = util.calculate_psnr(img_E, img_H, border=border) | |
ssim = util.calculate_ssim(img_E, img_H, border=border) | |
test_results['psnr'].append(psnr) | |
test_results['ssim'].append(ssim) | |
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim)) | |
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None | |
if np.ndim(img_H) == 3: # RGB image | |
img_E_y = util.rgb2ycbcr(img_E, only_y=True) | |
img_H_y = util.rgb2ycbcr(img_H, only_y=True) | |
psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border) | |
ssim_y = util.calculate_ssim(img_E_y, img_H_y, border=border) | |
test_results['psnr_y'].append(psnr_y) | |
test_results['ssim_y'].append(ssim_y) | |
# ------------------------------------ | |
# save results | |
# ------------------------------------ | |
util.imsave(img_E, os.path.join(E_path, img_name+'.png')) | |
if need_H: | |
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) | |
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) | |
logger.info('Average PSNR/SSIM(RGB) - {} - x{} --PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, sf, ave_psnr, ave_ssim)) | |
if np.ndim(img_H) == 3: | |
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) | |
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) | |
logger.info('Average PSNR/SSIM( Y ) - {} - x{} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, sf, ave_psnr_y, ave_ssim_y)) | |
if __name__ == '__main__': | |
main() | |