LambdaSuperRes / KAIR /utils /utils_video.py
cooperll
LambdaSuperRes initial commit
2514fb4
raw
history blame
17.9 kB
import os
import cv2
import numpy as np
import torch
import random
from os import path as osp
from torch.nn import functional as F
from abc import ABCMeta, abstractmethod
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
"""Scan a directory to find the interested files.
Args:
dir_path (str): Path of the directory.
suffix (str | tuple(str), optional): File suffix that we are
interested in. Default: None.
recursive (bool, optional): If set to True, recursively scan the
directory. Default: False.
full_path (bool, optional): If set to True, include the dir_path.
Default: False.
Returns:
A generator for all the interested files with relative paths.
"""
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
raise TypeError('"suffix" must be a string or tuple of strings')
root = dir_path
def _scandir(dir_path, suffix, recursive):
for entry in os.scandir(dir_path):
if not entry.name.startswith('.') and entry.is_file():
if full_path:
return_path = entry.path
else:
return_path = osp.relpath(entry.path, root)
if suffix is None:
yield return_path
elif return_path.endswith(suffix):
yield return_path
else:
if recursive:
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
else:
continue
return _scandir(dir_path, suffix=suffix, recursive=recursive)
def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False):
"""Read a sequence of images from a given folder path.
Args:
path (list[str] | str): List of image paths or image folder path.
require_mod_crop (bool): Require mod crop for each image.
Default: False.
scale (int): Scale factor for mod_crop. Default: 1.
return_imgname(bool): Whether return image names. Default False.
Returns:
Tensor: size (t, c, h, w), RGB, [0, 1].
list[str]: Returned image name list.
"""
if isinstance(path, list):
img_paths = path
else:
img_paths = sorted(list(scandir(path, full_path=True)))
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
if require_mod_crop:
imgs = [mod_crop(img, scale) for img in imgs]
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
imgs = torch.stack(imgs, dim=0)
if return_imgname:
imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths]
return imgs, imgnames
else:
return imgs
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
We use vertical flip and transpose for rotation implementation.
All the images in the list use the same augmentation.
Args:
imgs (list[ndarray] | ndarray): Images to be augmented. If the input
is an ndarray, it will be transformed to a list.
hflip (bool): Horizontal flip. Default: True.
rotation (bool): Ratotation. Default: True.
flows (list[ndarray]: Flows to be augmented. If the input is an
ndarray, it will be transformed to a list.
Dimension is (h, w, 2). Default: None.
return_status (bool): Return the status of flip and rotation.
Default: False.
Returns:
list[ndarray] | ndarray: Augmented images and flows. If returned
results only have one element, just return ndarray.
"""
hflip = hflip and random.random() < 0.5
vflip = rotation and random.random() < 0.5
rot90 = rotation and random.random() < 0.5
def _augment(img):
if hflip: # horizontal
cv2.flip(img, 1, img)
if vflip: # vertical
cv2.flip(img, 0, img)
if rot90:
img = img.transpose(1, 0, 2)
return img
def _augment_flow(flow):
if hflip: # horizontal
cv2.flip(flow, 1, flow)
flow[:, :, 0] *= -1
if vflip: # vertical
cv2.flip(flow, 0, flow)
flow[:, :, 1] *= -1
if rot90:
flow = flow.transpose(1, 0, 2)
flow = flow[:, :, [1, 0]]
return flow
if not isinstance(imgs, list):
imgs = [imgs]
imgs = [_augment(img) for img in imgs]
if len(imgs) == 1:
imgs = imgs[0]
if flows is not None:
if not isinstance(flows, list):
flows = [flows]
flows = [_augment_flow(flow) for flow in flows]
if len(flows) == 1:
flows = flows[0]
return imgs, flows
else:
if return_status:
return imgs, (hflip, vflip, rot90)
else:
return imgs
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None):
"""Paired random crop. Support Numpy array and Tensor inputs.
It crops lists of lq and gt images with corresponding locations.
Args:
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images
should have the same shape. If the input is an ndarray, it will
be transformed to a list containing itself.
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
should have the same shape. If the input is an ndarray, it will
be transformed to a list containing itself.
gt_patch_size (int): GT patch size.
scale (int): Scale factor.
gt_path (str): Path to ground-truth. Default: None.
Returns:
list[ndarray] | ndarray: GT images and LQ images. If returned results
only have one element, just return ndarray.
"""
if not isinstance(img_gts, list):
img_gts = [img_gts]
if not isinstance(img_lqs, list):
img_lqs = [img_lqs]
# determine input type: Numpy array or Tensor
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'
if input_type == 'Tensor':
h_lq, w_lq = img_lqs[0].size()[-2:]
h_gt, w_gt = img_gts[0].size()[-2:]
else:
h_lq, w_lq = img_lqs[0].shape[0:2]
h_gt, w_gt = img_gts[0].shape[0:2]
lq_patch_size = gt_patch_size // scale
if h_gt != h_lq * scale or w_gt != w_lq * scale:
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
f'multiplication of LQ ({h_lq}, {w_lq}).')
if h_lq < lq_patch_size or w_lq < lq_patch_size:
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
f'({lq_patch_size}, {lq_patch_size}). '
f'Please remove {gt_path}.')
# randomly choose top and left coordinates for lq patch
top = random.randint(0, h_lq - lq_patch_size)
left = random.randint(0, w_lq - lq_patch_size)
# crop lq patch
if input_type == 'Tensor':
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
else:
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
# crop corresponding gt patch
top_gt, left_gt = int(top * scale), int(left * scale)
if input_type == 'Tensor':
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
else:
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
if len(img_gts) == 1:
img_gts = img_gts[0]
if len(img_lqs) == 1:
img_lqs = img_lqs[0]
return img_gts, img_lqs
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501
class BaseStorageBackend(metaclass=ABCMeta):
"""Abstract class of storage backends.
All backends need to implement two apis: ``get()`` and ``get_text()``.
``get()`` reads the file as a byte stream and ``get_text()`` reads the file
as texts.
"""
@abstractmethod
def get(self, filepath):
pass
@abstractmethod
def get_text(self, filepath):
pass
class MemcachedBackend(BaseStorageBackend):
"""Memcached storage backend.
Attributes:
server_list_cfg (str): Config file for memcached server list.
client_cfg (str): Config file for memcached client.
sys_path (str | None): Additional path to be appended to `sys.path`.
Default: None.
"""
def __init__(self, server_list_cfg, client_cfg, sys_path=None):
if sys_path is not None:
import sys
sys.path.append(sys_path)
try:
import mc
except ImportError:
raise ImportError('Please install memcached to enable MemcachedBackend.')
self.server_list_cfg = server_list_cfg
self.client_cfg = client_cfg
self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg)
# mc.pyvector servers as a point which points to a memory cache
self._mc_buffer = mc.pyvector()
def get(self, filepath):
filepath = str(filepath)
import mc
self._client.Get(filepath, self._mc_buffer)
value_buf = mc.ConvertBuffer(self._mc_buffer)
return value_buf
def get_text(self, filepath):
raise NotImplementedError
class HardDiskBackend(BaseStorageBackend):
"""Raw hard disks storage backend."""
def get(self, filepath):
filepath = str(filepath)
with open(filepath, 'rb') as f:
value_buf = f.read()
return value_buf
def get_text(self, filepath):
filepath = str(filepath)
with open(filepath, 'r') as f:
value_buf = f.read()
return value_buf
class LmdbBackend(BaseStorageBackend):
"""Lmdb storage backend.
Args:
db_paths (str | list[str]): Lmdb database paths.
client_keys (str | list[str]): Lmdb client keys. Default: 'default'.
readonly (bool, optional): Lmdb environment parameter. If True,
disallow any write operations. Default: True.
lock (bool, optional): Lmdb environment parameter. If False, when
concurrent access occurs, do not lock the database. Default: False.
readahead (bool, optional): Lmdb environment parameter. If False,
disable the OS filesystem readahead mechanism, which may improve
random read performance when a database is larger than RAM.
Default: False.
Attributes:
db_paths (list): Lmdb database path.
_client (list): A list of several lmdb envs.
"""
def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs):
try:
import lmdb
except ImportError:
raise ImportError('Please install lmdb to enable LmdbBackend.')
if isinstance(client_keys, str):
client_keys = [client_keys]
if isinstance(db_paths, list):
self.db_paths = [str(v) for v in db_paths]
elif isinstance(db_paths, str):
self.db_paths = [str(db_paths)]
assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, '
f'but received {len(client_keys)} and {len(self.db_paths)}.')
self._client = {}
for client, path in zip(client_keys, self.db_paths):
self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs)
def get(self, filepath, client_key):
"""Get values according to the filepath from one lmdb named client_key.
Args:
filepath (str | obj:`Path`): Here, filepath is the lmdb key.
client_key (str): Used for distinguishing different lmdb envs.
"""
filepath = str(filepath)
assert client_key in self._client, (f'client_key {client_key} is not ' 'in lmdb clients.')
client = self._client[client_key]
with client.begin(write=False) as txn:
value_buf = txn.get(filepath.encode('ascii'))
return value_buf
def get_text(self, filepath):
raise NotImplementedError
class FileClient(object):
"""A general file client to access files in different backend.
The client loads a file or text in a specified backend from its path
and return it as a binary file. it can also register other backend
accessor with a given name and backend class.
Attributes:
backend (str): The storage backend type. Options are "disk",
"memcached" and "lmdb".
client (:obj:`BaseStorageBackend`): The backend object.
"""
_backends = {
'disk': HardDiskBackend,
'memcached': MemcachedBackend,
'lmdb': LmdbBackend,
}
def __init__(self, backend='disk', **kwargs):
if backend not in self._backends:
raise ValueError(f'Backend {backend} is not supported. Currently supported ones'
f' are {list(self._backends.keys())}')
self.backend = backend
self.client = self._backends[backend](**kwargs)
def get(self, filepath, client_key='default'):
# client_key is used only for lmdb, where different fileclients have
# different lmdb environments.
if self.backend == 'lmdb':
return self.client.get(filepath, client_key)
else:
return self.client.get(filepath)
def get_text(self, filepath):
return self.client.get_text(filepath)
def imfrombytes(content, flag='color', float32=False):
"""Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale` and `unchanged`.
float32 (bool): Whether to change to float32., If True, will also norm
to [0, 1]. Default: False.
Returns:
ndarray: Loaded image array.
"""
img_np = np.frombuffer(content, np.uint8)
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
img = cv2.imdecode(img_np, imread_flags[flag])
if float32:
img = img.astype(np.float32) / 255.
return img