Spaces:
Running
Running
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import random | |
from os import path as osp | |
from torch.nn import functional as F | |
from abc import ABCMeta, abstractmethod | |
def scandir(dir_path, suffix=None, recursive=False, full_path=False): | |
"""Scan a directory to find the interested files. | |
Args: | |
dir_path (str): Path of the directory. | |
suffix (str | tuple(str), optional): File suffix that we are | |
interested in. Default: None. | |
recursive (bool, optional): If set to True, recursively scan the | |
directory. Default: False. | |
full_path (bool, optional): If set to True, include the dir_path. | |
Default: False. | |
Returns: | |
A generator for all the interested files with relative paths. | |
""" | |
if (suffix is not None) and not isinstance(suffix, (str, tuple)): | |
raise TypeError('"suffix" must be a string or tuple of strings') | |
root = dir_path | |
def _scandir(dir_path, suffix, recursive): | |
for entry in os.scandir(dir_path): | |
if not entry.name.startswith('.') and entry.is_file(): | |
if full_path: | |
return_path = entry.path | |
else: | |
return_path = osp.relpath(entry.path, root) | |
if suffix is None: | |
yield return_path | |
elif return_path.endswith(suffix): | |
yield return_path | |
else: | |
if recursive: | |
yield from _scandir(entry.path, suffix=suffix, recursive=recursive) | |
else: | |
continue | |
return _scandir(dir_path, suffix=suffix, recursive=recursive) | |
def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False): | |
"""Read a sequence of images from a given folder path. | |
Args: | |
path (list[str] | str): List of image paths or image folder path. | |
require_mod_crop (bool): Require mod crop for each image. | |
Default: False. | |
scale (int): Scale factor for mod_crop. Default: 1. | |
return_imgname(bool): Whether return image names. Default False. | |
Returns: | |
Tensor: size (t, c, h, w), RGB, [0, 1]. | |
list[str]: Returned image name list. | |
""" | |
if isinstance(path, list): | |
img_paths = path | |
else: | |
img_paths = sorted(list(scandir(path, full_path=True))) | |
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths] | |
if require_mod_crop: | |
imgs = [mod_crop(img, scale) for img in imgs] | |
imgs = img2tensor(imgs, bgr2rgb=True, float32=True) | |
imgs = torch.stack(imgs, dim=0) | |
if return_imgname: | |
imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths] | |
return imgs, imgnames | |
else: | |
return imgs | |
def img2tensor(imgs, bgr2rgb=True, float32=True): | |
"""Numpy array to tensor. | |
Args: | |
imgs (list[ndarray] | ndarray): Input images. | |
bgr2rgb (bool): Whether to change bgr to rgb. | |
float32 (bool): Whether to change to float32. | |
Returns: | |
list[tensor] | tensor: Tensor images. If returned results only have | |
one element, just return tensor. | |
""" | |
def _totensor(img, bgr2rgb, float32): | |
if img.shape[2] == 3 and bgr2rgb: | |
if img.dtype == 'float64': | |
img = img.astype('float32') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = torch.from_numpy(img.transpose(2, 0, 1)) | |
if float32: | |
img = img.float() | |
return img | |
if isinstance(imgs, list): | |
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |
else: | |
return _totensor(imgs, bgr2rgb, float32) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
"""Convert torch Tensors into image numpy arrays. | |
After clamping to [min, max], values will be normalized to [0, 1]. | |
Args: | |
tensor (Tensor or list[Tensor]): Accept shapes: | |
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); | |
2) 3D Tensor of shape (3/1 x H x W); | |
3) 2D Tensor of shape (H x W). | |
Tensor channel should be in RGB order. | |
rgb2bgr (bool): Whether to change rgb to bgr. | |
out_type (numpy type): output types. If ``np.uint8``, transform outputs | |
to uint8 type with range [0, 255]; otherwise, float type with | |
range [0, 1]. Default: ``np.uint8``. | |
min_max (tuple[int]): min and max values for clamp. | |
Returns: | |
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of | |
shape (H x W). The channel order is BGR. | |
""" | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
if torch.is_tensor(tensor): | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1: | |
result = result[0] | |
return result | |
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): | |
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). | |
We use vertical flip and transpose for rotation implementation. | |
All the images in the list use the same augmentation. | |
Args: | |
imgs (list[ndarray] | ndarray): Images to be augmented. If the input | |
is an ndarray, it will be transformed to a list. | |
hflip (bool): Horizontal flip. Default: True. | |
rotation (bool): Ratotation. Default: True. | |
flows (list[ndarray]: Flows to be augmented. If the input is an | |
ndarray, it will be transformed to a list. | |
Dimension is (h, w, 2). Default: None. | |
return_status (bool): Return the status of flip and rotation. | |
Default: False. | |
Returns: | |
list[ndarray] | ndarray: Augmented images and flows. If returned | |
results only have one element, just return ndarray. | |
""" | |
hflip = hflip and random.random() < 0.5 | |
vflip = rotation and random.random() < 0.5 | |
rot90 = rotation and random.random() < 0.5 | |
def _augment(img): | |
if hflip: # horizontal | |
cv2.flip(img, 1, img) | |
if vflip: # vertical | |
cv2.flip(img, 0, img) | |
if rot90: | |
img = img.transpose(1, 0, 2) | |
return img | |
def _augment_flow(flow): | |
if hflip: # horizontal | |
cv2.flip(flow, 1, flow) | |
flow[:, :, 0] *= -1 | |
if vflip: # vertical | |
cv2.flip(flow, 0, flow) | |
flow[:, :, 1] *= -1 | |
if rot90: | |
flow = flow.transpose(1, 0, 2) | |
flow = flow[:, :, [1, 0]] | |
return flow | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
imgs = [_augment(img) for img in imgs] | |
if len(imgs) == 1: | |
imgs = imgs[0] | |
if flows is not None: | |
if not isinstance(flows, list): | |
flows = [flows] | |
flows = [_augment_flow(flow) for flow in flows] | |
if len(flows) == 1: | |
flows = flows[0] | |
return imgs, flows | |
else: | |
if return_status: | |
return imgs, (hflip, vflip, rot90) | |
else: | |
return imgs | |
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None): | |
"""Paired random crop. Support Numpy array and Tensor inputs. | |
It crops lists of lq and gt images with corresponding locations. | |
Args: | |
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images | |
should have the same shape. If the input is an ndarray, it will | |
be transformed to a list containing itself. | |
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images | |
should have the same shape. If the input is an ndarray, it will | |
be transformed to a list containing itself. | |
gt_patch_size (int): GT patch size. | |
scale (int): Scale factor. | |
gt_path (str): Path to ground-truth. Default: None. | |
Returns: | |
list[ndarray] | ndarray: GT images and LQ images. If returned results | |
only have one element, just return ndarray. | |
""" | |
if not isinstance(img_gts, list): | |
img_gts = [img_gts] | |
if not isinstance(img_lqs, list): | |
img_lqs = [img_lqs] | |
# determine input type: Numpy array or Tensor | |
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy' | |
if input_type == 'Tensor': | |
h_lq, w_lq = img_lqs[0].size()[-2:] | |
h_gt, w_gt = img_gts[0].size()[-2:] | |
else: | |
h_lq, w_lq = img_lqs[0].shape[0:2] | |
h_gt, w_gt = img_gts[0].shape[0:2] | |
lq_patch_size = gt_patch_size // scale | |
if h_gt != h_lq * scale or w_gt != w_lq * scale: | |
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', | |
f'multiplication of LQ ({h_lq}, {w_lq}).') | |
if h_lq < lq_patch_size or w_lq < lq_patch_size: | |
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' | |
f'({lq_patch_size}, {lq_patch_size}). ' | |
f'Please remove {gt_path}.') | |
# randomly choose top and left coordinates for lq patch | |
top = random.randint(0, h_lq - lq_patch_size) | |
left = random.randint(0, w_lq - lq_patch_size) | |
# crop lq patch | |
if input_type == 'Tensor': | |
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs] | |
else: | |
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] | |
# crop corresponding gt patch | |
top_gt, left_gt = int(top * scale), int(left * scale) | |
if input_type == 'Tensor': | |
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts] | |
else: | |
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] | |
if len(img_gts) == 1: | |
img_gts = img_gts[0] | |
if len(img_lqs) == 1: | |
img_lqs = img_lqs[0] | |
return img_gts, img_lqs | |
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501 | |
class BaseStorageBackend(metaclass=ABCMeta): | |
"""Abstract class of storage backends. | |
All backends need to implement two apis: ``get()`` and ``get_text()``. | |
``get()`` reads the file as a byte stream and ``get_text()`` reads the file | |
as texts. | |
""" | |
def get(self, filepath): | |
pass | |
def get_text(self, filepath): | |
pass | |
class MemcachedBackend(BaseStorageBackend): | |
"""Memcached storage backend. | |
Attributes: | |
server_list_cfg (str): Config file for memcached server list. | |
client_cfg (str): Config file for memcached client. | |
sys_path (str | None): Additional path to be appended to `sys.path`. | |
Default: None. | |
""" | |
def __init__(self, server_list_cfg, client_cfg, sys_path=None): | |
if sys_path is not None: | |
import sys | |
sys.path.append(sys_path) | |
try: | |
import mc | |
except ImportError: | |
raise ImportError('Please install memcached to enable MemcachedBackend.') | |
self.server_list_cfg = server_list_cfg | |
self.client_cfg = client_cfg | |
self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg) | |
# mc.pyvector servers as a point which points to a memory cache | |
self._mc_buffer = mc.pyvector() | |
def get(self, filepath): | |
filepath = str(filepath) | |
import mc | |
self._client.Get(filepath, self._mc_buffer) | |
value_buf = mc.ConvertBuffer(self._mc_buffer) | |
return value_buf | |
def get_text(self, filepath): | |
raise NotImplementedError | |
class HardDiskBackend(BaseStorageBackend): | |
"""Raw hard disks storage backend.""" | |
def get(self, filepath): | |
filepath = str(filepath) | |
with open(filepath, 'rb') as f: | |
value_buf = f.read() | |
return value_buf | |
def get_text(self, filepath): | |
filepath = str(filepath) | |
with open(filepath, 'r') as f: | |
value_buf = f.read() | |
return value_buf | |
class LmdbBackend(BaseStorageBackend): | |
"""Lmdb storage backend. | |
Args: | |
db_paths (str | list[str]): Lmdb database paths. | |
client_keys (str | list[str]): Lmdb client keys. Default: 'default'. | |
readonly (bool, optional): Lmdb environment parameter. If True, | |
disallow any write operations. Default: True. | |
lock (bool, optional): Lmdb environment parameter. If False, when | |
concurrent access occurs, do not lock the database. Default: False. | |
readahead (bool, optional): Lmdb environment parameter. If False, | |
disable the OS filesystem readahead mechanism, which may improve | |
random read performance when a database is larger than RAM. | |
Default: False. | |
Attributes: | |
db_paths (list): Lmdb database path. | |
_client (list): A list of several lmdb envs. | |
""" | |
def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs): | |
try: | |
import lmdb | |
except ImportError: | |
raise ImportError('Please install lmdb to enable LmdbBackend.') | |
if isinstance(client_keys, str): | |
client_keys = [client_keys] | |
if isinstance(db_paths, list): | |
self.db_paths = [str(v) for v in db_paths] | |
elif isinstance(db_paths, str): | |
self.db_paths = [str(db_paths)] | |
assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, ' | |
f'but received {len(client_keys)} and {len(self.db_paths)}.') | |
self._client = {} | |
for client, path in zip(client_keys, self.db_paths): | |
self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs) | |
def get(self, filepath, client_key): | |
"""Get values according to the filepath from one lmdb named client_key. | |
Args: | |
filepath (str | obj:`Path`): Here, filepath is the lmdb key. | |
client_key (str): Used for distinguishing different lmdb envs. | |
""" | |
filepath = str(filepath) | |
assert client_key in self._client, (f'client_key {client_key} is not ' 'in lmdb clients.') | |
client = self._client[client_key] | |
with client.begin(write=False) as txn: | |
value_buf = txn.get(filepath.encode('ascii')) | |
return value_buf | |
def get_text(self, filepath): | |
raise NotImplementedError | |
class FileClient(object): | |
"""A general file client to access files in different backend. | |
The client loads a file or text in a specified backend from its path | |
and return it as a binary file. it can also register other backend | |
accessor with a given name and backend class. | |
Attributes: | |
backend (str): The storage backend type. Options are "disk", | |
"memcached" and "lmdb". | |
client (:obj:`BaseStorageBackend`): The backend object. | |
""" | |
_backends = { | |
'disk': HardDiskBackend, | |
'memcached': MemcachedBackend, | |
'lmdb': LmdbBackend, | |
} | |
def __init__(self, backend='disk', **kwargs): | |
if backend not in self._backends: | |
raise ValueError(f'Backend {backend} is not supported. Currently supported ones' | |
f' are {list(self._backends.keys())}') | |
self.backend = backend | |
self.client = self._backends[backend](**kwargs) | |
def get(self, filepath, client_key='default'): | |
# client_key is used only for lmdb, where different fileclients have | |
# different lmdb environments. | |
if self.backend == 'lmdb': | |
return self.client.get(filepath, client_key) | |
else: | |
return self.client.get(filepath) | |
def get_text(self, filepath): | |
return self.client.get_text(filepath) | |
def imfrombytes(content, flag='color', float32=False): | |
"""Read an image from bytes. | |
Args: | |
content (bytes): Image bytes got from files or other streams. | |
flag (str): Flags specifying the color type of a loaded image, | |
candidates are `color`, `grayscale` and `unchanged`. | |
float32 (bool): Whether to change to float32., If True, will also norm | |
to [0, 1]. Default: False. | |
Returns: | |
ndarray: Loaded image array. | |
""" | |
img_np = np.frombuffer(content, np.uint8) | |
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED} | |
img = cv2.imdecode(img_np, imread_flags[flag]) | |
if float32: | |
img = img.astype(np.float32) / 255. | |
return img | |