Spaces:
Running
Running
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py # noqa: E501 | |
import functools | |
import os | |
import subprocess | |
import torch | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
# ---------------------------------- | |
# init | |
# ---------------------------------- | |
def init_dist(launcher, backend='nccl', **kwargs): | |
if mp.get_start_method(allow_none=True) is None: | |
mp.set_start_method('spawn') | |
if launcher == 'pytorch': | |
_init_dist_pytorch(backend, **kwargs) | |
elif launcher == 'slurm': | |
_init_dist_slurm(backend, **kwargs) | |
else: | |
raise ValueError(f'Invalid launcher type: {launcher}') | |
def _init_dist_pytorch(backend, **kwargs): | |
rank = int(os.environ['RANK']) | |
num_gpus = torch.cuda.device_count() | |
torch.cuda.set_device(rank % num_gpus) | |
dist.init_process_group(backend=backend, **kwargs) | |
def _init_dist_slurm(backend, port=None): | |
"""Initialize slurm distributed training environment. | |
If argument ``port`` is not specified, then the master port will be system | |
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system | |
environment variable, then a default port ``29500`` will be used. | |
Args: | |
backend (str): Backend of torch.distributed. | |
port (int, optional): Master port. Defaults to None. | |
""" | |
proc_id = int(os.environ['SLURM_PROCID']) | |
ntasks = int(os.environ['SLURM_NTASKS']) | |
node_list = os.environ['SLURM_NODELIST'] | |
num_gpus = torch.cuda.device_count() | |
torch.cuda.set_device(proc_id % num_gpus) | |
addr = subprocess.getoutput( | |
f'scontrol show hostname {node_list} | head -n1') | |
# specify master port | |
if port is not None: | |
os.environ['MASTER_PORT'] = str(port) | |
elif 'MASTER_PORT' in os.environ: | |
pass # use MASTER_PORT in the environment variable | |
else: | |
# 29500 is torch.distributed default port | |
os.environ['MASTER_PORT'] = '29500' | |
os.environ['MASTER_ADDR'] = addr | |
os.environ['WORLD_SIZE'] = str(ntasks) | |
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) | |
os.environ['RANK'] = str(proc_id) | |
dist.init_process_group(backend=backend) | |
# ---------------------------------- | |
# get rank and world_size | |
# ---------------------------------- | |
def get_dist_info(): | |
if dist.is_available(): | |
initialized = dist.is_initialized() | |
else: | |
initialized = False | |
if initialized: | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
else: | |
rank = 0 | |
world_size = 1 | |
return rank, world_size | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def master_only(func): | |
def wrapper(*args, **kwargs): | |
rank, _ = get_dist_info() | |
if rank == 0: | |
return func(*args, **kwargs) | |
return wrapper | |
# ---------------------------------- | |
# operation across ranks | |
# ---------------------------------- | |
def reduce_sum(tensor): | |
if not dist.is_available(): | |
return tensor | |
if not dist.is_initialized(): | |
return tensor | |
tensor = tensor.clone() | |
dist.all_reduce(tensor, op=dist.ReduceOp.SUM) | |
return tensor | |
def gather_grad(params): | |
world_size = get_world_size() | |
if world_size == 1: | |
return | |
for param in params: | |
if param.grad is not None: | |
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) | |
param.grad.data.div_(world_size) | |
def all_gather(data): | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to('cuda') | |
local_size = torch.IntTensor([tensor.numel()]).to('cuda') | |
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda')) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda') | |
tensor = torch.cat((tensor, padding), 0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_loss_dict(loss_dict): | |
world_size = get_world_size() | |
if world_size < 2: | |
return loss_dict | |
with torch.no_grad(): | |
keys = [] | |
losses = [] | |
for k in sorted(loss_dict.keys()): | |
keys.append(k) | |
losses.append(loss_dict[k]) | |
losses = torch.stack(losses, 0) | |
dist.reduce(losses, dst=0) | |
if dist.get_rank() == 0: | |
losses /= world_size | |
reduced_losses = {k: v for k, v in zip(keys, losses)} | |
return reduced_losses | |