Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
""" | |
# -------------------------------------------- | |
# Batch Normalization | |
# -------------------------------------------- | |
# Kai Zhang ([email protected]) | |
# https://github.com/cszn | |
# 01/Jan/2019 | |
# -------------------------------------------- | |
""" | |
# -------------------------------------------- | |
# remove/delete specified layer | |
# -------------------------------------------- | |
def deleteLayer(model, layer_type=nn.BatchNorm2d): | |
''' Kai Zhang, 11/Jan/2019. | |
''' | |
for k, m in list(model.named_children()): | |
if isinstance(m, layer_type): | |
del model._modules[k] | |
deleteLayer(m, layer_type) | |
# -------------------------------------------- | |
# merge bn, "conv+bn" --> "conv" | |
# -------------------------------------------- | |
def merge_bn(model): | |
''' Kai Zhang, 11/Jan/2019. | |
merge all 'Conv+BN' (or 'TConv+BN') into 'Conv' (or 'TConv') | |
based on https://github.com/pytorch/pytorch/pull/901 | |
''' | |
prev_m = None | |
for k, m in list(model.named_children()): | |
if (isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d)) and (isinstance(prev_m, nn.Conv2d) or isinstance(prev_m, nn.Linear) or isinstance(prev_m, nn.ConvTranspose2d)): | |
w = prev_m.weight.data | |
if prev_m.bias is None: | |
zeros = torch.Tensor(prev_m.out_channels).zero_().type(w.type()) | |
prev_m.bias = nn.Parameter(zeros) | |
b = prev_m.bias.data | |
invstd = m.running_var.clone().add_(m.eps).pow_(-0.5) | |
if isinstance(prev_m, nn.ConvTranspose2d): | |
w.mul_(invstd.view(1, w.size(1), 1, 1).expand_as(w)) | |
else: | |
w.mul_(invstd.view(w.size(0), 1, 1, 1).expand_as(w)) | |
b.add_(-m.running_mean).mul_(invstd) | |
if m.affine: | |
if isinstance(prev_m, nn.ConvTranspose2d): | |
w.mul_(m.weight.data.view(1, w.size(1), 1, 1).expand_as(w)) | |
else: | |
w.mul_(m.weight.data.view(w.size(0), 1, 1, 1).expand_as(w)) | |
b.mul_(m.weight.data).add_(m.bias.data) | |
del model._modules[k] | |
prev_m = m | |
merge_bn(m) | |
# -------------------------------------------- | |
# add bn, "conv" --> "conv+bn" | |
# -------------------------------------------- | |
def add_bn(model): | |
''' Kai Zhang, 11/Jan/2019. | |
''' | |
for k, m in list(model.named_children()): | |
if (isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose2d)): | |
b = nn.BatchNorm2d(m.out_channels, momentum=0.1, affine=True) | |
b.weight.data.fill_(1) | |
new_m = nn.Sequential(model._modules[k], b) | |
model._modules[k] = new_m | |
add_bn(m) | |
# -------------------------------------------- | |
# tidy model after removing bn | |
# -------------------------------------------- | |
def tidy_sequential(model): | |
''' Kai Zhang, 11/Jan/2019. | |
''' | |
for k, m in list(model.named_children()): | |
if isinstance(m, nn.Sequential): | |
if m.__len__() == 1: | |
model._modules[k] = m.__getitem__(0) | |
tidy_sequential(m) | |