Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import models.basicblock as B | |
import numpy as np | |
from utils import utils_image as util | |
""" | |
# -------------------------------------------- | |
# Kai Zhang ([email protected]) | |
@inproceedings{zhang2020deep, | |
title={Deep unfolding network for image super-resolution}, | |
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu}, | |
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, | |
pages={0--0}, | |
year={2020} | |
} | |
# -------------------------------------------- | |
""" | |
""" | |
# -------------------------------------------- | |
# basic functions | |
# -------------------------------------------- | |
""" | |
def splits(a, sf): | |
'''split a into sfxsf distinct blocks | |
Args: | |
a: NxCxWxHx2 | |
sf: split factor | |
Returns: | |
b: NxCx(W/sf)x(H/sf)x2x(sf^2) | |
''' | |
b = torch.stack(torch.chunk(a, sf, dim=2), dim=5) | |
b = torch.cat(torch.chunk(b, sf, dim=3), dim=5) | |
return b | |
def c2c(x): | |
return torch.from_numpy(np.stack([np.float32(x.real), np.float32(x.imag)], axis=-1)) | |
def r2c(x): | |
# convert real to complex | |
return torch.stack([x, torch.zeros_like(x)], -1) | |
def cdiv(x, y): | |
# complex division | |
a, b = x[..., 0], x[..., 1] | |
c, d = y[..., 0], y[..., 1] | |
cd2 = c**2 + d**2 | |
return torch.stack([(a*c+b*d)/cd2, (b*c-a*d)/cd2], -1) | |
def crdiv(x, y): | |
# complex/real division | |
a, b = x[..., 0], x[..., 1] | |
return torch.stack([a/y, b/y], -1) | |
def csum(x, y): | |
# complex + real | |
return torch.stack([x[..., 0] + y, x[..., 1]], -1) | |
def cabs(x): | |
# modulus of a complex number | |
return torch.pow(x[..., 0]**2+x[..., 1]**2, 0.5) | |
def cabs2(x): | |
return x[..., 0]**2+x[..., 1]**2 | |
def cmul(t1, t2): | |
'''complex multiplication | |
Args: | |
t1: NxCxHxWx2, complex tensor | |
t2: NxCxHxWx2 | |
Returns: | |
output: NxCxHxWx2 | |
''' | |
real1, imag1 = t1[..., 0], t1[..., 1] | |
real2, imag2 = t2[..., 0], t2[..., 1] | |
return torch.stack([real1 * real2 - imag1 * imag2, real1 * imag2 + imag1 * real2], dim=-1) | |
def cconj(t, inplace=False): | |
'''complex's conjugation | |
Args: | |
t: NxCxHxWx2 | |
Returns: | |
output: NxCxHxWx2 | |
''' | |
c = t.clone() if not inplace else t | |
c[..., 1] *= -1 | |
return c | |
def rfft(t): | |
# Real-to-complex Discrete Fourier Transform | |
return torch.rfft(t, 2, onesided=False) | |
def irfft(t): | |
# Complex-to-real Inverse Discrete Fourier Transform | |
return torch.irfft(t, 2, onesided=False) | |
def fft(t): | |
# Complex-to-complex Discrete Fourier Transform | |
return torch.fft(t, 2) | |
def ifft(t): | |
# Complex-to-complex Inverse Discrete Fourier Transform | |
return torch.ifft(t, 2) | |
def p2o(psf, shape): | |
''' | |
Convert point-spread function to optical transfer function. | |
otf = p2o(psf) computes the Fast Fourier Transform (FFT) of the | |
point-spread function (PSF) array and creates the optical transfer | |
function (OTF) array that is not influenced by the PSF off-centering. | |
Args: | |
psf: NxCxhxw | |
shape: [H, W] | |
Returns: | |
otf: NxCxHxWx2 | |
''' | |
otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf) | |
otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf) | |
for axis, axis_size in enumerate(psf.shape[2:]): | |
otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2) | |
otf = torch.rfft(otf, 2, onesided=False) | |
n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf))) | |
otf[..., 1][torch.abs(otf[..., 1]) < n_ops*2.22e-16] = torch.tensor(0).type_as(psf) | |
return otf | |
def upsample(x, sf=3): | |
'''s-fold upsampler | |
Upsampling the spatial size by filling the new entries with zeros | |
x: tensor image, NxCxWxH | |
''' | |
st = 0 | |
z = torch.zeros((x.shape[0], x.shape[1], x.shape[2]*sf, x.shape[3]*sf)).type_as(x) | |
z[..., st::sf, st::sf].copy_(x) | |
return z | |
def downsample(x, sf=3): | |
'''s-fold downsampler | |
Keeping the upper-left pixel for each distinct sfxsf patch and discarding the others | |
x: tensor image, NxCxWxH | |
''' | |
st = 0 | |
return x[..., st::sf, st::sf] | |
def downsample_np(x, sf=3): | |
st = 0 | |
return x[st::sf, st::sf, ...] | |
""" | |
# -------------------------------------------- | |
# (1) Prior module; ResUNet: act as a non-blind denoiser | |
# x_k = P(z_k, beta_k) | |
# -------------------------------------------- | |
""" | |
class ResUNet(nn.Module): | |
def __init__(self, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose'): | |
super(ResUNet, self).__init__() | |
self.m_head = B.conv(in_nc, nc[0], bias=False, mode='C') | |
# downsample | |
if downsample_mode == 'avgpool': | |
downsample_block = B.downsample_avgpool | |
elif downsample_mode == 'maxpool': | |
downsample_block = B.downsample_maxpool | |
elif downsample_mode == 'strideconv': | |
downsample_block = B.downsample_strideconv | |
else: | |
raise NotImplementedError('downsample mode [{:s}] is not found'.format(downsample_mode)) | |
self.m_down1 = B.sequential(*[B.ResBlock(nc[0], nc[0], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[0], nc[1], bias=False, mode='2')) | |
self.m_down2 = B.sequential(*[B.ResBlock(nc[1], nc[1], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[1], nc[2], bias=False, mode='2')) | |
self.m_down3 = B.sequential(*[B.ResBlock(nc[2], nc[2], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[2], nc[3], bias=False, mode='2')) | |
self.m_body = B.sequential(*[B.ResBlock(nc[3], nc[3], bias=False, mode='C'+act_mode+'C') for _ in range(nb)]) | |
# upsample | |
if upsample_mode == 'upconv': | |
upsample_block = B.upsample_upconv | |
elif upsample_mode == 'pixelshuffle': | |
upsample_block = B.upsample_pixelshuffle | |
elif upsample_mode == 'convtranspose': | |
upsample_block = B.upsample_convtranspose | |
else: | |
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) | |
self.m_up3 = B.sequential(upsample_block(nc[3], nc[2], bias=False, mode='2'), *[B.ResBlock(nc[2], nc[2], bias=False, mode='C'+act_mode+'C') for _ in range(nb)]) | |
self.m_up2 = B.sequential(upsample_block(nc[2], nc[1], bias=False, mode='2'), *[B.ResBlock(nc[1], nc[1], bias=False, mode='C'+act_mode+'C') for _ in range(nb)]) | |
self.m_up1 = B.sequential(upsample_block(nc[1], nc[0], bias=False, mode='2'), *[B.ResBlock(nc[0], nc[0], bias=False, mode='C'+act_mode+'C') for _ in range(nb)]) | |
self.m_tail = B.conv(nc[0], out_nc, bias=False, mode='C') | |
def forward(self, x): | |
h, w = x.size()[-2:] | |
paddingBottom = int(np.ceil(h/8)*8-h) | |
paddingRight = int(np.ceil(w/8)*8-w) | |
x = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x) | |
x1 = self.m_head(x) | |
x2 = self.m_down1(x1) | |
x3 = self.m_down2(x2) | |
x4 = self.m_down3(x3) | |
x = self.m_body(x4) | |
x = self.m_up3(x+x4) | |
x = self.m_up2(x+x3) | |
x = self.m_up1(x+x2) | |
x = self.m_tail(x+x1) | |
x = x[..., :h, :w] | |
return x | |
""" | |
# -------------------------------------------- | |
# (2) Data module, closed-form solution | |
# It is a trainable-parameter-free module ^_^ | |
# z_k = D(x_{k-1}, s, k, y, alpha_k) | |
# some can be pre-calculated | |
# -------------------------------------------- | |
""" | |
class DataNet(nn.Module): | |
def __init__(self): | |
super(DataNet, self).__init__() | |
def forward(self, x, FB, FBC, F2B, FBFy, alpha, sf): | |
FR = FBFy + torch.rfft(alpha*x, 2, onesided=False) | |
x1 = cmul(FB, FR) | |
FBR = torch.mean(splits(x1, sf), dim=-1, keepdim=False) | |
invW = torch.mean(splits(F2B, sf), dim=-1, keepdim=False) | |
invWBR = cdiv(FBR, csum(invW, alpha)) | |
FCBinvWBR = cmul(FBC, invWBR.repeat(1, 1, sf, sf, 1)) | |
FX = (FR-FCBinvWBR)/alpha.unsqueeze(-1) | |
Xest = torch.irfft(FX, 2, onesided=False) | |
return Xest | |
""" | |
# -------------------------------------------- | |
# (3) Hyper-parameter module | |
# -------------------------------------------- | |
""" | |
class HyPaNet(nn.Module): | |
def __init__(self, in_nc=2, out_nc=8, channel=64): | |
super(HyPaNet, self).__init__() | |
self.mlp = nn.Sequential( | |
nn.Conv2d(in_nc, channel, 1, padding=0, bias=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channel, channel, 1, padding=0, bias=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channel, out_nc, 1, padding=0, bias=True), | |
nn.Softplus()) | |
def forward(self, x): | |
x = self.mlp(x) + 1e-6 | |
return x | |
""" | |
# -------------------------------------------- | |
# main USRNet | |
# deep unfolding super-resolution network | |
# -------------------------------------------- | |
""" | |
class USRNet(nn.Module): | |
def __init__(self, n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose'): | |
super(USRNet, self).__init__() | |
self.d = DataNet() | |
self.p = ResUNet(in_nc=in_nc, out_nc=out_nc, nc=nc, nb=nb, act_mode=act_mode, downsample_mode=downsample_mode, upsample_mode=upsample_mode) | |
self.h = HyPaNet(in_nc=2, out_nc=n_iter*2, channel=h_nc) | |
self.n = n_iter | |
def forward(self, x, k, sf, sigma): | |
''' | |
x: tensor, NxCxWxH | |
k: tensor, Nx(1,3)xwxh | |
sf: integer, 1 | |
sigma: tensor, Nx1x1x1 | |
''' | |
# initialization & pre-calculation | |
w, h = x.shape[-2:] | |
FB = p2o(k, (w*sf, h*sf)) | |
FBC = cconj(FB, inplace=False) | |
F2B = r2c(cabs2(FB)) | |
STy = upsample(x, sf=sf) | |
FBFy = cmul(FBC, torch.rfft(STy, 2, onesided=False)) | |
x = nn.functional.interpolate(x, scale_factor=sf, mode='nearest') | |
# hyper-parameter, alpha & beta | |
ab = self.h(torch.cat((sigma, torch.tensor(sf).type_as(sigma).expand_as(sigma)), dim=1)) | |
# unfolding | |
for i in range(self.n): | |
x = self.d(x, FB, FBC, F2B, FBFy, ab[:, i:i+1, ...], sf) | |
x = self.p(torch.cat((x, ab[:, i+self.n:i+self.n+1, ...].repeat(1, 1, x.size(2), x.size(3))), dim=1)) | |
return x | |