Spaces:
Running
Running
import math | |
import torch.nn as nn | |
import models.basicblock as B | |
""" | |
# -------------------------------------------- | |
# SR network with Residual in Residual Dense Block (RRDB) | |
# "ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks" | |
# -------------------------------------------- | |
""" | |
class RRDB(nn.Module): | |
""" | |
gc: number of growth channels | |
nb: number of RRDB | |
""" | |
def __init__(self, in_nc=3, out_nc=3, nc=64, nb=23, gc=32, upscale=4, act_mode='L', upsample_mode='upconv'): | |
super(RRDB, self).__init__() | |
assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL' | |
n_upscale = int(math.log(upscale, 2)) | |
if upscale == 3: | |
n_upscale = 1 | |
m_head = B.conv(in_nc, nc, mode='C') | |
m_body = [B.RRDB(nc, gc=32, mode='C'+act_mode) for _ in range(nb)] | |
m_body.append(B.conv(nc, nc, mode='C')) | |
if upsample_mode == 'upconv': | |
upsample_block = B.upsample_upconv | |
elif upsample_mode == 'pixelshuffle': | |
upsample_block = B.upsample_pixelshuffle | |
elif upsample_mode == 'convtranspose': | |
upsample_block = B.upsample_convtranspose | |
else: | |
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) | |
if upscale == 3: | |
m_uper = upsample_block(nc, nc, mode='3'+act_mode) | |
else: | |
m_uper = [upsample_block(nc, nc, mode='2'+act_mode) for _ in range(n_upscale)] | |
H_conv0 = B.conv(nc, nc, mode='C'+act_mode) | |
H_conv1 = B.conv(nc, out_nc, mode='C') | |
m_tail = B.sequential(H_conv0, H_conv1) | |
self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper, m_tail) | |
def forward(self, x): | |
x = self.model(x) | |
return x | |