Spaces:
Running
Running
import math | |
import torch.nn as nn | |
import models.basicblock as B | |
""" | |
# -------------------------------------------- | |
# simplified information multi-distillation | |
# network (IMDN) for SR | |
# -------------------------------------------- | |
References: | |
@inproceedings{hui2019lightweight, | |
title={Lightweight Image Super-Resolution with Information Multi-distillation Network}, | |
author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei}, | |
booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)}, | |
pages={2024--2032}, | |
year={2019} | |
} | |
@inproceedings{zhang2019aim, | |
title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results}, | |
author={Kai Zhang and Shuhang Gu and Radu Timofte and others}, | |
booktitle={IEEE International Conference on Computer Vision Workshops}, | |
year={2019} | |
} | |
# -------------------------------------------- | |
""" | |
# -------------------------------------------- | |
# modified version, https://github.com/Zheng222/IMDN | |
# first place solution for AIM 2019 challenge | |
# -------------------------------------------- | |
class IMDN(nn.Module): | |
def __init__(self, in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle', negative_slope=0.05): | |
""" | |
in_nc: channel number of input | |
out_nc: channel number of output | |
nc: channel number | |
nb: number of residual blocks | |
upscale: up-scale factor | |
act_mode: activation function | |
upsample_mode: 'upconv' | 'pixelshuffle' | 'convtranspose' | |
""" | |
super(IMDN, self).__init__() | |
assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL' | |
m_head = B.conv(in_nc, nc, mode='C') | |
m_body = [B.IMDBlock(nc, nc, mode='C'+act_mode, negative_slope=negative_slope) for _ in range(nb)] | |
m_body.append(B.conv(nc, nc, mode='C')) | |
if upsample_mode == 'upconv': | |
upsample_block = B.upsample_upconv | |
elif upsample_mode == 'pixelshuffle': | |
upsample_block = B.upsample_pixelshuffle | |
elif upsample_mode == 'convtranspose': | |
upsample_block = B.upsample_convtranspose | |
else: | |
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) | |
m_uper = upsample_block(nc, out_nc, mode=str(upscale)) | |
self.model = B.sequential(m_head, B.ShortcutBlock(B.sequential(*m_body)), *m_uper) | |
def forward(self, x): | |
x = self.model(x) | |
return x | |