Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torchvision | |
""" | |
# -------------------------------------------- | |
# VGG Feature Extractor | |
# -------------------------------------------- | |
""" | |
# -------------------------------------------- | |
# VGG features | |
# Assume input range is [0, 1] | |
# -------------------------------------------- | |
class VGGFeatureExtractor(nn.Module): | |
def __init__(self, | |
feature_layer=34, | |
use_bn=False, | |
use_input_norm=True, | |
device=torch.device('cpu')): | |
super(VGGFeatureExtractor, self).__init__() | |
if use_bn: | |
model = torchvision.models.vgg19_bn(pretrained=True) | |
else: | |
model = torchvision.models.vgg19(pretrained=True) | |
self.use_input_norm = use_input_norm | |
if self.use_input_norm: | |
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) | |
# [0.485-1, 0.456-1, 0.406-1] if input in range [-1,1] | |
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) | |
# [0.229*2, 0.224*2, 0.225*2] if input in range [-1,1] | |
self.register_buffer('mean', mean) | |
self.register_buffer('std', std) | |
self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)]) | |
# No need to BP to variable | |
for k, v in self.features.named_parameters(): | |
v.requires_grad = False | |
def forward(self, x): | |
if self.use_input_norm: | |
x = (x - self.mean) / self.std | |
output = self.features(x) | |
return output | |