Spaces:
Running
Running
import numpy as np | |
import os | |
import random | |
import torch | |
from pathlib import Path | |
import torch.utils.data as data | |
import utils.utils_video as utils_video | |
class VideoRecurrentTrainDataset(data.Dataset): | |
"""Video dataset for training recurrent networks. | |
The keys are generated from a meta info txt file. | |
basicsr/data/meta_info/meta_info_XXX_GT.txt | |
Each line contains: | |
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by | |
a white space. | |
Examples: | |
720p_240fps_1 100 (720,1280,3) | |
720p_240fps_3 100 (720,1280,3) | |
... | |
Key examples: "720p_240fps_1/00000" | |
GT (gt): Ground-Truth; | |
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
dataroot_flow (str, optional): Data root path for flow. | |
meta_info_file (str): Path for meta information file. | |
val_partition (str): Validation partition types. 'REDS4' or | |
'official'. | |
io_backend (dict): IO backend type and other kwarg. | |
num_frame (int): Window size for input frames. | |
gt_size (int): Cropped patched size for gt patches. | |
interval_list (list): Interval list for temporal augmentation. | |
random_reverse (bool): Random reverse input frames. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h | |
and w for implementation). | |
scale (bool): Scale, which will be added automatically. | |
""" | |
def __init__(self, opt): | |
super(VideoRecurrentTrainDataset, self).__init__() | |
self.opt = opt | |
self.scale = opt.get('scale', 4) | |
self.gt_size = opt.get('gt_size', 256) | |
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) | |
self.filename_tmpl = opt.get('filename_tmpl', '08d') | |
self.filename_ext = opt.get('filename_ext', 'png') | |
self.num_frame = opt['num_frame'] | |
keys = [] | |
total_num_frames = [] # some clips may not have 100 frames | |
start_frames = [] # some clips may not start from 00000 | |
train_folders = os.listdir(self.lq_root) | |
print("TRAIN FOLDER: ", train_folders[0]) | |
with open(opt['meta_info_file'], 'r') as fin: | |
for line in fin: | |
folder, frame_num, _, start_frame = line.split(' ') | |
if folder in train_folders: | |
keys.extend([f'{folder}/{i:{self.filename_tmpl}}' for i in range(int(start_frame), int(start_frame)+int(frame_num))]) | |
total_num_frames.extend([int(frame_num) for i in range(int(frame_num))]) | |
start_frames.extend([int(start_frame) for i in range(int(frame_num))]) | |
# remove the video clips used in validation | |
if opt['name'] == 'REDS': | |
if opt['val_partition'] == 'REDS4': | |
val_partition = ['000', '011', '015', '020'] | |
elif opt['val_partition'] == 'official': | |
val_partition = [f'{v:03d}' for v in range(240, 270)] | |
else: | |
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.' | |
f"Supported ones are ['official', 'REDS4'].") | |
else: | |
val_partition = [] | |
self.keys = [] | |
self.total_num_frames = [] # some clips may not have 100 frames | |
self.start_frames = [] | |
if opt['test_mode']: | |
for i, v in zip(range(len(keys)), keys): | |
if v.split('/')[0] in val_partition: | |
self.keys.append(keys[i]) | |
self.total_num_frames.append(total_num_frames[i]) | |
self.start_frames.append(start_frames[i]) | |
else: | |
for i, v in zip(range(len(keys)), keys): | |
if v.split('/')[0] not in val_partition: | |
self.keys.append(keys[i]) | |
self.total_num_frames.append(total_num_frames[i]) | |
self.start_frames.append(start_frames[i]) | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.is_lmdb = False | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.is_lmdb = True | |
if hasattr(self, 'flow_root') and self.flow_root is not None: | |
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root] | |
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow'] | |
else: | |
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] | |
self.io_backend_opt['client_keys'] = ['lq', 'gt'] | |
# temporal augmentation configs | |
self.interval_list = opt.get('interval_list', [1]) | |
self.random_reverse = opt.get('random_reverse', False) | |
interval_str = ','.join(str(x) for x in self.interval_list) | |
print(f'Temporal augmentation interval list: [{interval_str}]; ' | |
f'random reverse is {self.random_reverse}.') | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = utils_video.FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
key = self.keys[index] | |
total_num_frames = self.total_num_frames[index] | |
start_frames = self.start_frames[index] | |
clip_name, frame_name = key.split('/') # key example: 000/00000000 | |
# determine the neighboring frames | |
interval = random.choice(self.interval_list) | |
# ensure not exceeding the borders | |
start_frame_idx = int(frame_name) | |
endmost_start_frame_idx = start_frames + total_num_frames - self.num_frame * interval | |
if start_frame_idx > endmost_start_frame_idx: | |
start_frame_idx = random.randint(start_frames, endmost_start_frame_idx) | |
end_frame_idx = start_frame_idx + self.num_frame * interval | |
neighbor_list = list(range(start_frame_idx, end_frame_idx, interval)) | |
# random reverse | |
if self.random_reverse and random.random() < 0.5: | |
neighbor_list.reverse() | |
# get the neighboring LQ and GT frames | |
img_lqs = [] | |
img_gts = [] | |
for neighbor in neighbor_list: | |
if self.is_lmdb: | |
img_lq_path = f'{clip_name}/{neighbor:{self.filename_tmpl}}' | |
img_gt_path = f'{clip_name}/{neighbor:{self.filename_tmpl}}' | |
else: | |
img_lq_path = self.lq_root / clip_name / f'{neighbor:{self.filename_tmpl}}.{self.filename_ext}' | |
img_gt_path = self.gt_root / clip_name / f'{neighbor:{self.filename_tmpl}}.{self.filename_ext}' | |
# get LQ | |
img_bytes = self.file_client.get(img_lq_path, 'lq') | |
img_lq = utils_video.imfrombytes(img_bytes, float32=True) | |
img_lqs.append(img_lq) | |
# get GT | |
img_bytes = self.file_client.get(img_gt_path, 'gt') | |
img_gt = utils_video.imfrombytes(img_bytes, float32=True) | |
img_gts.append(img_gt) | |
# randomly crop | |
img_gts, img_lqs = utils_video.paired_random_crop(img_gts, img_lqs, self.gt_size, self.scale, img_gt_path) | |
# augmentation - flip, rotate | |
img_lqs.extend(img_gts) | |
img_results = utils_video.augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) | |
img_results = utils_video.img2tensor(img_results) | |
img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0) | |
img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0) | |
# img_lqs: (t, c, h, w) | |
# img_gts: (t, c, h, w) | |
# key: str | |
return {'L': img_lqs, 'H': img_gts, 'key': key} | |
def __len__(self): | |
return len(self.keys) | |
class VideoRecurrentTrainNonblindDenoisingDataset(VideoRecurrentTrainDataset): | |
"""Video dataset for training recurrent architectures in non-blind video denoising. | |
Args: | |
Same as VideoTestDataset. | |
""" | |
def __init__(self, opt): | |
super(VideoRecurrentTrainNonblindDenoisingDataset, self).__init__(opt) | |
self.sigma_min = self.opt['sigma_min'] / 255. | |
self.sigma_max = self.opt['sigma_max'] / 255. | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = utils_video.FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
key = self.keys[index] | |
total_num_frames = self.total_num_frames[index] | |
start_frames = self.start_frames[index] | |
clip_name, frame_name = key.split('/') # key example: 000/00000000 | |
# determine the neighboring frames | |
interval = random.choice(self.interval_list) | |
# ensure not exceeding the borders | |
start_frame_idx = int(frame_name) | |
endmost_start_frame_idx = start_frames + total_num_frames - self.num_frame * interval | |
if start_frame_idx > endmost_start_frame_idx: | |
start_frame_idx = random.randint(start_frames, endmost_start_frame_idx) | |
end_frame_idx = start_frame_idx + self.num_frame * interval | |
neighbor_list = list(range(start_frame_idx, end_frame_idx, interval)) | |
# random reverse | |
if self.random_reverse and random.random() < 0.5: | |
neighbor_list.reverse() | |
# get the neighboring GT frames | |
img_gts = [] | |
for neighbor in neighbor_list: | |
if self.is_lmdb: | |
img_gt_path = f'{clip_name}/{neighbor:{self.filename_tmpl}}' | |
else: | |
img_gt_path = self.gt_root / clip_name / f'{neighbor:{self.filename_tmpl}}.{self.filename_ext}' | |
# get GT | |
img_bytes = self.file_client.get(img_gt_path, 'gt') | |
img_gt = utils_video.imfrombytes(img_bytes, float32=True) | |
img_gts.append(img_gt) | |
# randomly crop | |
img_gts, _ = utils_video.paired_random_crop(img_gts, img_gts, self.gt_size, 1, img_gt_path) | |
# augmentation - flip, rotate | |
img_gts = utils_video.augment(img_gts, self.opt['use_hflip'], self.opt['use_rot']) | |
img_gts = utils_video.img2tensor(img_gts) | |
img_gts = torch.stack(img_gts, dim=0) | |
# we add noise in the network | |
noise_level = torch.empty((1, 1, 1, 1)).uniform_(self.sigma_min, self.sigma_max) | |
noise = torch.normal(mean=0, std=noise_level.expand_as(img_gts)) | |
img_lqs = img_gts + noise | |
t, _, h, w = img_lqs.shape | |
img_lqs = torch.cat([img_lqs, noise_level.expand(t, 1, h, w)], 1) | |
# img_lqs: (t, c, h, w) | |
# img_gts: (t, c, h, w) | |
# key: str | |
return {'L': img_lqs, 'H': img_gts, 'key': key} | |
def __len__(self): | |
return len(self.keys) | |
class VideoRecurrentTrainVimeoDataset(data.Dataset): | |
"""Vimeo90K dataset for training recurrent networks. | |
The keys are generated from a meta info txt file. | |
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt | |
Each line contains: | |
1. clip name; 2. frame number; 3. image shape, separated by a white space. | |
Examples: | |
00001/0001 7 (256,448,3) | |
00001/0002 7 (256,448,3) | |
Key examples: "00001/0001" | |
GT (gt): Ground-Truth; | |
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. | |
The neighboring frame list for different num_frame: | |
num_frame | frame list | |
1 | 4 | |
3 | 3,4,5 | |
5 | 2,3,4,5,6 | |
7 | 1,2,3,4,5,6,7 | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
meta_info_file (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
num_frame (int): Window size for input frames. | |
gt_size (int): Cropped patched size for gt patches. | |
random_reverse (bool): Random reverse input frames. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h | |
and w for implementation). | |
scale (bool): Scale, which will be added automatically. | |
""" | |
def __init__(self, opt): | |
super(VideoRecurrentTrainVimeoDataset, self).__init__() | |
self.opt = opt | |
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) | |
with open(opt['meta_info_file'], 'r') as fin: | |
self.keys = [line.split(' ')[0] for line in fin] | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.is_lmdb = False | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.is_lmdb = True | |
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] | |
self.io_backend_opt['client_keys'] = ['lq', 'gt'] | |
# indices of input images | |
self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])] | |
# temporal augmentation configs | |
self.random_reverse = opt['random_reverse'] | |
print(f'Random reverse is {self.random_reverse}.') | |
self.flip_sequence = opt.get('flip_sequence', False) | |
self.pad_sequence = opt.get('pad_sequence', False) | |
self.neighbor_list = [1, 2, 3, 4, 5, 6, 7] | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = utils_video.FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
# random reverse | |
if self.random_reverse and random.random() < 0.5: | |
self.neighbor_list.reverse() | |
scale = self.opt['scale'] | |
gt_size = self.opt['gt_size'] | |
key = self.keys[index] | |
clip, seq = key.split('/') # key example: 00001/0001 | |
# get the neighboring LQ and GT frames | |
img_lqs = [] | |
img_gts = [] | |
for neighbor in self.neighbor_list: | |
if self.is_lmdb: | |
img_lq_path = f'{clip}/{seq}/im{neighbor}' | |
img_gt_path = f'{clip}/{seq}/im{neighbor}' | |
else: | |
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png' | |
img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png' | |
# LQ | |
img_bytes = self.file_client.get(img_lq_path, 'lq') | |
img_lq = utils_video.imfrombytes(img_bytes, float32=True) | |
# GT | |
img_bytes = self.file_client.get(img_gt_path, 'gt') | |
img_gt = utils_video.imfrombytes(img_bytes, float32=True) | |
img_lqs.append(img_lq) | |
img_gts.append(img_gt) | |
# randomly crop | |
img_gts, img_lqs = utils_video.paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path) | |
# augmentation - flip, rotate | |
img_lqs.extend(img_gts) | |
img_results = utils_video.augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) | |
img_results = utils_video.img2tensor(img_results) | |
img_lqs = torch.stack(img_results[:7], dim=0) | |
img_gts = torch.stack(img_results[7:], dim=0) | |
if self.flip_sequence: # flip the sequence: 7 frames to 14 frames | |
img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0) | |
img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0) | |
elif self.pad_sequence: # pad the sequence: 7 frames to 8 frames | |
img_lqs = torch.cat([img_lqs, img_lqs[-1:,...]], dim=0) | |
img_gts = torch.cat([img_gts, img_gts[-1:,...]], dim=0) | |
# img_lqs: (t, c, h, w) | |
# img_gt: (c, h, w) | |
# key: str | |
return {'L': img_lqs, 'H': img_gts, 'key': key} | |
def __len__(self): | |
return len(self.keys) | |