Spaces:
Running
Running
import torch.utils.data as data | |
import utils.utils_image as util | |
class DatasetL(data.Dataset): | |
''' | |
# ----------------------------------------- | |
# Get L in testing. | |
# Only "dataroot_L" is needed. | |
# ----------------------------------------- | |
# ----------------------------------------- | |
''' | |
def __init__(self, opt): | |
super(DatasetL, self).__init__() | |
print('Read L in testing. Only "dataroot_L" is needed.') | |
self.opt = opt | |
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 | |
# ------------------------------------ | |
# get the path of L | |
# ------------------------------------ | |
self.paths_L = util.get_image_paths(opt['dataroot_L']) | |
assert self.paths_L, 'Error: L paths are empty.' | |
def __getitem__(self, index): | |
L_path = None | |
# ------------------------------------ | |
# get L image | |
# ------------------------------------ | |
L_path = self.paths_L[index] | |
img_L = util.imread_uint(L_path, self.n_channels) | |
# ------------------------------------ | |
# HWC to CHW, numpy to tensor | |
# ------------------------------------ | |
img_L = util.uint2tensor3(img_L) | |
return {'L': img_L, 'L_path': L_path} | |
def __len__(self): | |
return len(self.paths_L) | |