Spaces:
Running
Running
import random | |
import numpy as np | |
import torch | |
import torch.utils.data as data | |
import utils.utils_image as util | |
class DatasetFFDNet(data.Dataset): | |
""" | |
# ----------------------------------------- | |
# Get L/H/M for denosing on AWGN with a range of sigma. | |
# Only dataroot_H is needed. | |
# ----------------------------------------- | |
# e.g., FFDNet, H = f(L, sigma), sigma is noise level | |
# ----------------------------------------- | |
""" | |
def __init__(self, opt): | |
super(DatasetFFDNet, self).__init__() | |
self.opt = opt | |
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 | |
self.patch_size = self.opt['H_size'] if opt['H_size'] else 64 | |
self.sigma = opt['sigma'] if opt['sigma'] else [0, 75] | |
self.sigma_min, self.sigma_max = self.sigma[0], self.sigma[1] | |
self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else 25 | |
# ------------------------------------- | |
# get the path of H, return None if input is None | |
# ------------------------------------- | |
self.paths_H = util.get_image_paths(opt['dataroot_H']) | |
def __getitem__(self, index): | |
# ------------------------------------- | |
# get H image | |
# ------------------------------------- | |
H_path = self.paths_H[index] | |
img_H = util.imread_uint(H_path, self.n_channels) | |
L_path = H_path | |
if self.opt['phase'] == 'train': | |
""" | |
# -------------------------------- | |
# get L/H/M patch pairs | |
# -------------------------------- | |
""" | |
H, W = img_H.shape[:2] | |
# --------------------------------- | |
# randomly crop the patch | |
# --------------------------------- | |
rnd_h = random.randint(0, max(0, H - self.patch_size)) | |
rnd_w = random.randint(0, max(0, W - self.patch_size)) | |
patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :] | |
# --------------------------------- | |
# augmentation - flip, rotate | |
# --------------------------------- | |
mode = random.randint(0, 7) | |
patch_H = util.augment_img(patch_H, mode=mode) | |
# --------------------------------- | |
# HWC to CHW, numpy(uint) to tensor | |
# --------------------------------- | |
img_H = util.uint2tensor3(patch_H) | |
img_L = img_H.clone() | |
# --------------------------------- | |
# get noise level | |
# --------------------------------- | |
# noise_level = torch.FloatTensor([np.random.randint(self.sigma_min, self.sigma_max)])/255.0 | |
noise_level = torch.FloatTensor([np.random.uniform(self.sigma_min, self.sigma_max)])/255.0 | |
# --------------------------------- | |
# add noise | |
# --------------------------------- | |
noise = torch.randn(img_L.size()).mul_(noise_level).float() | |
img_L.add_(noise) | |
else: | |
""" | |
# -------------------------------- | |
# get L/H/sigma image pairs | |
# -------------------------------- | |
""" | |
img_H = util.uint2single(img_H) | |
img_L = np.copy(img_H) | |
np.random.seed(seed=0) | |
img_L += np.random.normal(0, self.sigma_test/255.0, img_L.shape) | |
noise_level = torch.FloatTensor([self.sigma_test/255.0]) | |
# --------------------------------- | |
# L/H image pairs | |
# --------------------------------- | |
img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L) | |
noise_level = noise_level.unsqueeze(1).unsqueeze(1) | |
return {'L': img_L, 'H': img_H, 'C': noise_level, 'L_path': L_path, 'H_path': H_path} | |
def __len__(self): | |
return len(self.paths_H) | |