LambdaSuperRes / KAIR /data /dataset_dncnn.py
cooperll
LambdaSuperRes initial commit
2514fb4
raw
history blame
3.51 kB
import os.path
import random
import numpy as np
import torch
import torch.utils.data as data
import utils.utils_image as util
class DatasetDnCNN(data.Dataset):
"""
# -----------------------------------------
# Get L/H for denosing on AWGN with fixed sigma.
# Only dataroot_H is needed.
# -----------------------------------------
# e.g., DnCNN
# -----------------------------------------
"""
def __init__(self, opt):
super(DatasetDnCNN, self).__init__()
print('Dataset: Denosing on AWGN with fixed sigma. Only dataroot_H is needed.')
self.opt = opt
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
self.patch_size = opt['H_size'] if opt['H_size'] else 64
self.sigma = opt['sigma'] if opt['sigma'] else 25
self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else self.sigma
# ------------------------------------
# get path of H
# return None if input is None
# ------------------------------------
self.paths_H = util.get_image_paths(opt['dataroot_H'])
def __getitem__(self, index):
# ------------------------------------
# get H image
# ------------------------------------
H_path = self.paths_H[index]
img_H = util.imread_uint(H_path, self.n_channels)
L_path = H_path
if self.opt['phase'] == 'train':
"""
# --------------------------------
# get L/H patch pairs
# --------------------------------
"""
H, W, _ = img_H.shape
# --------------------------------
# randomly crop the patch
# --------------------------------
rnd_h = random.randint(0, max(0, H - self.patch_size))
rnd_w = random.randint(0, max(0, W - self.patch_size))
patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :]
# --------------------------------
# augmentation - flip, rotate
# --------------------------------
mode = random.randint(0, 7)
patch_H = util.augment_img(patch_H, mode=mode)
# --------------------------------
# HWC to CHW, numpy(uint) to tensor
# --------------------------------
img_H = util.uint2tensor3(patch_H)
img_L = img_H.clone()
# --------------------------------
# add noise
# --------------------------------
noise = torch.randn(img_L.size()).mul_(self.sigma/255.0)
img_L.add_(noise)
else:
"""
# --------------------------------
# get L/H image pairs
# --------------------------------
"""
img_H = util.uint2single(img_H)
img_L = np.copy(img_H)
# --------------------------------
# add noise
# --------------------------------
np.random.seed(seed=0)
img_L += np.random.normal(0, self.sigma_test/255.0, img_L.shape)
# --------------------------------
# HWC to CHW, numpy to tensor
# --------------------------------
img_L = util.single2tensor3(img_L)
img_H = util.single2tensor3(img_H)
return {'L': img_L, 'H': img_H, 'H_path': H_path, 'L_path': L_path}
def __len__(self):
return len(self.paths_H)