File size: 14,089 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import argparse
from os import path as osp

from utils.utils_video import scandir
from utils.utils_lmdb import make_lmdb_from_imgs


def create_lmdb_for_div2k():
    """Create lmdb files for DIV2K dataset.

    Usage:
        Before run this script, please run `extract_subimages.py`.
        Typically, there are four folders to be processed for DIV2K dataset.
            DIV2K_train_HR_sub
            DIV2K_train_LR_bicubic/X2_sub
            DIV2K_train_LR_bicubic/X3_sub
            DIV2K_train_LR_bicubic/X4_sub
        Remember to modify opt configurations according to your settings.
    """
    # HR images
    folder_path = 'trainsets/DIV2K/DIV2K_train_HR_sub'
    lmdb_path = 'trainsets/DIV2K/DIV2K_train_HR_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    # LRx2 images
    folder_path = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X2_sub'
    lmdb_path = 'trainsets/DIV2K/DIV2K_train_LR_bicubic_X2_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    # LRx3 images
    folder_path = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X3_sub'
    lmdb_path = 'trainsets/DIV2K/DIV2K_train_LR_bicubic_X3_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)

    # LRx4 images
    folder_path = 'trainsets/DIV2K/DIV2K_train_LR_bicubic/X4_sub'
    lmdb_path = 'trainsets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb'
    img_path_list, keys = prepare_keys_div2k(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys)


def prepare_keys_div2k(folder_path):
    """Prepare image path list and keys for DIV2K dataset.

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='png', recursive=False)))
    keys = [img_path.split('.png')[0] for img_path in sorted(img_path_list)]

    return img_path_list, keys


def create_lmdb_for_reds():
    """Create lmdb files for REDS dataset.

    Usage:
        Before run this script, please run `regroup_reds_dataset.py`.
        We take three folders for example:
            train_sharp
            train_sharp_bicubic
            train_blur (for video deblurring)
        Remember to modify opt configurations according to your settings.
    """
    # train_sharp
    folder_path = 'trainsets/REDS/train_sharp'
    lmdb_path = 'trainsets/REDS/train_sharp_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # train_sharp_bicubic
    folder_path = 'trainsets/REDS/train_sharp_bicubic'
    lmdb_path = 'trainsets/REDS/train_sharp_bicubic_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # train_blur (for video deblurring)
    folder_path = 'trainsets/REDS_blur/train_blur'
    lmdb_path = 'trainsets/REDS_blur/train_blur_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # train_blur_bicubic (for video deblurring-sr)
    folder_path = 'trainsets/REDS_blur_bicubic/train_blur_bicubic'
    lmdb_path = 'trainsets/REDS_blur_bicubic/train_blur_bicubic_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_reds(folder_path):
    """Prepare image path list and keys for REDS dataset.

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='png', recursive=True)))
    keys = [v.split('.png')[0] for v in img_path_list]  # example: 000/00000000

    return img_path_list, keys


def create_lmdb_for_vimeo90k():
    """Create lmdb files for Vimeo90K dataset.

    Usage:
        Remember to modify opt configurations according to your settings.
    """
    # GT
    folder_path = 'trainsets/vimeo90k/vimeo_septuplet/sequences'
    lmdb_path = 'trainsets/vimeo90k/vimeo90k_train_GT_only4th.lmdb'
    train_list_path = 'trainsets/vimeo90k/vimeo_septuplet/sep_trainlist.txt'
    img_path_list, keys = prepare_keys_vimeo90k(folder_path, train_list_path, 'gt')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # LQ
    folder_path = 'trainsets/vimeo90k/vimeo_septuplet_matlabLRx4/sequences'
    lmdb_path = 'trainsets/vimeo90k/vimeo90k_train_LR7frames.lmdb'
    train_list_path = 'trainsets/vimeo90k/vimeo_septuplet/sep_trainlist.txt'
    img_path_list, keys = prepare_keys_vimeo90k(folder_path, train_list_path, 'lq')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def create_lmdb_for_vimeo90k_bd():
    """Create lmdb files for Vimeo90K dataset (blur-downsampled lr only).

    Usage:
        Remember to modify opt configurations according to your settings.
    """
    # LQ (blur-downsampled, BD)
    folder_path = 'trainsets/vimeo90k/vimeo_septuplet_BDLRx4/sequences'
    lmdb_path = 'trainsets/vimeo90k/vimeo90k_train_BDLR7frames.lmdb'
    train_list_path = 'trainsets/vimeo90k/vimeo_septuplet/sep_trainlist.txt'
    img_path_list, keys = prepare_keys_vimeo90k(folder_path, train_list_path, 'lq')
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_vimeo90k(folder_path, train_list_path, mode):
    """Prepare image path list and keys for Vimeo90K dataset.

    Args:
        folder_path (str): Folder path.
        train_list_path (str): Path to the official train list.
        mode (str): One of 'gt' or 'lq'.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    with open(train_list_path, 'r') as fin:
        train_list = [line.strip() for line in fin]

    img_path_list = []
    keys = []
    for line in train_list:
        folder, sub_folder = line.split('/')
        img_path_list.extend([osp.join(folder, sub_folder, f'im{j + 1}.png') for j in range(7)])
        keys.extend([f'{folder}/{sub_folder}/im{j + 1}' for j in range(7)])

    if mode == 'gt':
        print('Only keep the 4th frame for the gt mode.')
        img_path_list = [v for v in img_path_list if v.endswith('im4.png')]
        keys = [v for v in keys if v.endswith('/im4')]

    return img_path_list, keys


def create_lmdb_for_dvd():
    """Create lmdb files for DVD dataset.

    Usage:
        We take two folders for example:
            GT
            input
        Remember to modify opt configurations according to your settings.
    """
    # train_sharp
    folder_path = 'trainsets/DVD/train_GT'
    lmdb_path = 'trainsets/DVD/train_GT.lmdb'
    img_path_list, keys = prepare_keys_dvd(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # train_sharp_bicubic
    folder_path = 'trainsets/DVD/train_GT_blurred'
    lmdb_path = 'trainsets/DVD/train_GT_blurred.lmdb'
    img_path_list, keys = prepare_keys_dvd(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_dvd(folder_path):
    """Prepare image path list and keys for DVD dataset.

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='jpg', recursive=True)))
    keys = [v.split('.jpg')[0] for v in img_path_list]  # example: 000/00000000

    return img_path_list, keys


def create_lmdb_for_gopro():
    """Create lmdb files for GoPro dataset.

    Usage:
        We take two folders for example:
            GT
            input
        Remember to modify opt configurations according to your settings.
    """
    # train_sharp
    folder_path = 'trainsets/GoPro/train_GT'
    lmdb_path = 'trainsets/GoPro/train_GT.lmdb'
    img_path_list, keys = prepare_keys_gopro(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # train_sharp_bicubic
    folder_path = 'trainsets/GoPro/train_GT_blurred'
    lmdb_path = 'trainsets/GoPro/train_GT_blurred.lmdb'
    img_path_list, keys = prepare_keys_gopro(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_gopro(folder_path):
    """Prepare image path list and keys for GoPro dataset.

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='png', recursive=True)))
    keys = [v.split('.png')[0] for v in img_path_list]  # example: 000/00000000

    return img_path_list, keys


def create_lmdb_for_davis():
    """Create lmdb files for DAVIS dataset.

    Usage:
        We take one folders for example:
            GT
        Remember to modify opt configurations according to your settings.
    """
    # train_sharp
    folder_path = 'trainsets/DAVIS/train_GT'
    lmdb_path = 'trainsets/DAVIS/train_GT.lmdb'
    img_path_list, keys = prepare_keys_davis(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_davis(folder_path):
    """Prepare image path list and keys for DAVIS dataset.

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='jpg', recursive=True)))
    keys = [v.split('.jpg')[0] for v in img_path_list]  # example: 000/00000000

    return img_path_list, keys



def create_lmdb_for_ldv():
    """Create lmdb files for LDV dataset.

    Usage:
        We take two folders for example:
            GT
            input
        Remember to modify opt configurations according to your settings.
    """
    # training_raw
    folder_path = 'trainsets/LDV/training_raw'
    lmdb_path = 'trainsets/LDV/training_raw.lmdb'
    img_path_list, keys = prepare_keys_ldv(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # training_fixed-QP
    folder_path = 'trainsets/LDV/training_fixed-QP'
    lmdb_path = 'trainsets/LDV/training_fixed-QP.lmdb'
    img_path_list, keys = prepare_keys_ldv(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)

    # training_fixed-rate
    folder_path = 'trainsets/LDV/training_fixed-rate'
    lmdb_path = 'trainsets/LDV/training_fixed-rate.lmdb'
    img_path_list, keys = prepare_keys_ldv(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_ldv(folder_path):
    """Prepare image path list and keys for LDV dataset.

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='png', recursive=True)))
    keys = [v.split('.png')[0] for v in img_path_list]  # example: 000/00000000

    return img_path_list, keys


def create_lmdb_for_reds_orig():
    """Create lmdb files for REDS_orig dataset (120 fps).

    Usage:
        Before run this script, please run `regroup_reds_dataset.py`.
        We take one folders for example:
            train_orig
        Remember to modify opt configurations according to your settings.
    """
    # train_sharp
    folder_path = 'trainsets/REDS_orig/train_orig'
    lmdb_path = 'trainsets/REDS_orig/train_orig_with_val.lmdb'
    img_path_list, keys = prepare_keys_reds_orig(folder_path)
    make_lmdb_from_imgs(folder_path, lmdb_path, img_path_list, keys, multiprocessing_read=True)


def prepare_keys_reds_orig(folder_path):
    """Prepare image path list and keys for REDS_orig dataset (120 fps).

    Args:
        folder_path (str): Folder path.

    Returns:
        list[str]: Image path list.
        list[str]: Key list.
    """
    print('Reading image path list ...')
    img_path_list = sorted(list(scandir(folder_path, suffix='png', recursive=True)))
    keys = [v.split('.png')[0] for v in img_path_list]  # example: 000/00000000

    return img_path_list, keys


if __name__ == '__main__':
    parser = argparse.ArgumentParser()

    parser.add_argument(
        '--dataset',
        type=str,
        help=("Options: 'DIV2K', 'REDS', 'Vimeo90K', 'Vimeo90K_BD', 'DVD', 'GoPro',"
              "'DAVIS', 'LDV', 'REDS_orig' "
              'You may need to modify the corresponding configurations in codes.'))
    args = parser.parse_args()
    dataset = args.dataset.lower()
    if dataset == 'div2k':
        create_lmdb_for_div2k()
    elif dataset == 'reds':
        create_lmdb_for_reds()
    elif dataset == 'vimeo90k':
        create_lmdb_for_vimeo90k()
    elif dataset == 'vimeo90k_bd':
        create_lmdb_for_vimeo90k_bd()
    elif dataset == 'dvd':
        create_lmdb_for_dvd()
    elif dataset == 'gopro':
        create_lmdb_for_gopro()
    elif dataset == 'davis':
        create_lmdb_for_davis()
    elif dataset == 'ldv':
        create_lmdb_for_ldv()
    elif dataset == 'reds_orig':
        create_lmdb_for_reds_orig()
    else:
        raise ValueError('Wrong dataset.')