File size: 10,347 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import torch
import torch.nn as nn
import models.basicblock as B
import numpy as np
from utils import utils_image as util


"""
# --------------------------------------------
# Kai Zhang ([email protected])
@inproceedings{zhang2020deep,
  title={Deep unfolding network for image super-resolution},
  author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  pages={0--0},
  year={2020}
}
# --------------------------------------------
"""


"""
# --------------------------------------------
# basic functions
# --------------------------------------------
"""


def splits(a, sf):
    '''split a into sfxsf distinct blocks

    Args:
        a: NxCxWxHx2
        sf: split factor

    Returns:
        b: NxCx(W/sf)x(H/sf)x2x(sf^2)
    '''
    b = torch.stack(torch.chunk(a, sf, dim=2), dim=5)
    b = torch.cat(torch.chunk(b, sf, dim=3), dim=5)
    return b


def c2c(x):
    return torch.from_numpy(np.stack([np.float32(x.real), np.float32(x.imag)], axis=-1))


def r2c(x):
    # convert real to complex
    return torch.stack([x, torch.zeros_like(x)], -1)


def cdiv(x, y):
    # complex division
    a, b = x[..., 0], x[..., 1]
    c, d = y[..., 0], y[..., 1]
    cd2 = c**2 + d**2
    return torch.stack([(a*c+b*d)/cd2, (b*c-a*d)/cd2], -1)


def crdiv(x, y):
    # complex/real division
    a, b = x[..., 0], x[..., 1]
    return torch.stack([a/y, b/y], -1)


def csum(x, y):
    # complex + real
    return torch.stack([x[..., 0] + y, x[..., 1]], -1)


def cabs(x):
    # modulus of a complex number
    return torch.pow(x[..., 0]**2+x[..., 1]**2, 0.5)


def cabs2(x):
    return x[..., 0]**2+x[..., 1]**2


def cmul(t1, t2):
    '''complex multiplication

    Args:
        t1: NxCxHxWx2, complex tensor
        t2: NxCxHxWx2

    Returns:
        output: NxCxHxWx2
    '''
    real1, imag1 = t1[..., 0], t1[..., 1]
    real2, imag2 = t2[..., 0], t2[..., 1]
    return torch.stack([real1 * real2 - imag1 * imag2, real1 * imag2 + imag1 * real2], dim=-1)


def cconj(t, inplace=False):
    '''complex's conjugation

    Args:
        t: NxCxHxWx2

    Returns:
        output: NxCxHxWx2
    '''
    c = t.clone() if not inplace else t
    c[..., 1] *= -1
    return c


def rfft(t):
    # Real-to-complex Discrete Fourier Transform
    return torch.rfft(t, 2, onesided=False)


def irfft(t):
    # Complex-to-real Inverse Discrete Fourier Transform
    return torch.irfft(t, 2, onesided=False)


def fft(t):
    # Complex-to-complex Discrete Fourier Transform
    return torch.fft(t, 2)


def ifft(t):
    # Complex-to-complex Inverse Discrete Fourier Transform
    return torch.ifft(t, 2)


def p2o(psf, shape):
    '''
    Convert point-spread function to optical transfer function.
    otf = p2o(psf) computes the Fast Fourier Transform (FFT) of the
    point-spread function (PSF) array and creates the optical transfer
    function (OTF) array that is not influenced by the PSF off-centering.

    Args:
        psf: NxCxhxw
        shape: [H, W]

    Returns:
        otf: NxCxHxWx2
    '''
    otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
    otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
    for axis, axis_size in enumerate(psf.shape[2:]):
        otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
    otf = torch.rfft(otf, 2, onesided=False)
    n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
    otf[..., 1][torch.abs(otf[..., 1]) < n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
    return otf


def upsample(x, sf=3):
    '''s-fold upsampler

    Upsampling the spatial size by filling the new entries with zeros

    x: tensor image, NxCxWxH
    '''
    st = 0
    z = torch.zeros((x.shape[0], x.shape[1], x.shape[2]*sf, x.shape[3]*sf)).type_as(x)
    z[..., st::sf, st::sf].copy_(x)
    return z


def downsample(x, sf=3):
    '''s-fold downsampler

    Keeping the upper-left pixel for each distinct sfxsf patch and discarding the others

    x: tensor image, NxCxWxH
    '''
    st = 0
    return x[..., st::sf, st::sf]


def downsample_np(x, sf=3):
    st = 0
    return x[st::sf, st::sf, ...]


"""
# --------------------------------------------
# (1) Prior module; ResUNet: act as a non-blind denoiser
# x_k = P(z_k, beta_k)
# --------------------------------------------
"""


class ResUNet(nn.Module):
    def __init__(self, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose'):
        super(ResUNet, self).__init__()

        self.m_head = B.conv(in_nc, nc[0], bias=False, mode='C')

        # downsample
        if downsample_mode == 'avgpool':
            downsample_block = B.downsample_avgpool
        elif downsample_mode == 'maxpool':
            downsample_block = B.downsample_maxpool
        elif downsample_mode == 'strideconv':
            downsample_block = B.downsample_strideconv
        else:
            raise NotImplementedError('downsample mode [{:s}] is not found'.format(downsample_mode))

        self.m_down1 = B.sequential(*[B.ResBlock(nc[0], nc[0], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[0], nc[1], bias=False, mode='2'))
        self.m_down2 = B.sequential(*[B.ResBlock(nc[1], nc[1], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[1], nc[2], bias=False, mode='2'))
        self.m_down3 = B.sequential(*[B.ResBlock(nc[2], nc[2], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[2], nc[3], bias=False, mode='2'))

        self.m_body  = B.sequential(*[B.ResBlock(nc[3], nc[3], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])

        # upsample
        if upsample_mode == 'upconv':
            upsample_block = B.upsample_upconv
        elif upsample_mode == 'pixelshuffle':
            upsample_block = B.upsample_pixelshuffle
        elif upsample_mode == 'convtranspose':
            upsample_block = B.upsample_convtranspose
        else:
            raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))

        self.m_up3 = B.sequential(upsample_block(nc[3], nc[2], bias=False, mode='2'), *[B.ResBlock(nc[2], nc[2], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])
        self.m_up2 = B.sequential(upsample_block(nc[2], nc[1], bias=False, mode='2'), *[B.ResBlock(nc[1], nc[1], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])
        self.m_up1 = B.sequential(upsample_block(nc[1], nc[0], bias=False, mode='2'), *[B.ResBlock(nc[0], nc[0], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])

        self.m_tail = B.conv(nc[0], out_nc, bias=False, mode='C')

    def forward(self, x):
        
        h, w = x.size()[-2:]
        paddingBottom = int(np.ceil(h/8)*8-h)
        paddingRight = int(np.ceil(w/8)*8-w)
        x = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x)

        x1 = self.m_head(x)
        x2 = self.m_down1(x1)
        x3 = self.m_down2(x2)
        x4 = self.m_down3(x3)
        x = self.m_body(x4)
        x = self.m_up3(x+x4)
        x = self.m_up2(x+x3)
        x = self.m_up1(x+x2)
        x = self.m_tail(x+x1)

        x = x[..., :h, :w]

        return x


"""
# --------------------------------------------
# (2) Data module, closed-form solution
# It is a trainable-parameter-free module  ^_^
# z_k = D(x_{k-1}, s, k, y, alpha_k)
# some can be pre-calculated
# --------------------------------------------
"""


class DataNet(nn.Module):
    def __init__(self):
        super(DataNet, self).__init__()

    def forward(self, x, FB, FBC, F2B, FBFy, alpha, sf):
        FR = FBFy + torch.rfft(alpha*x, 2, onesided=False)
        x1 = cmul(FB, FR)
        FBR = torch.mean(splits(x1, sf), dim=-1, keepdim=False)
        invW = torch.mean(splits(F2B, sf), dim=-1, keepdim=False)
        invWBR = cdiv(FBR, csum(invW, alpha))
        FCBinvWBR = cmul(FBC, invWBR.repeat(1, 1, sf, sf, 1))
        FX = (FR-FCBinvWBR)/alpha.unsqueeze(-1)
        Xest = torch.irfft(FX, 2, onesided=False)

        return Xest


"""
# --------------------------------------------
# (3) Hyper-parameter module
# --------------------------------------------
"""


class HyPaNet(nn.Module):
    def __init__(self, in_nc=2, out_nc=8, channel=64):
        super(HyPaNet, self).__init__()
        self.mlp = nn.Sequential(
                nn.Conv2d(in_nc, channel, 1, padding=0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel, channel, 1, padding=0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel, out_nc, 1, padding=0, bias=True),
                nn.Softplus())

    def forward(self, x):
        x = self.mlp(x) + 1e-6
        return x


"""
# --------------------------------------------
# main USRNet
# deep unfolding super-resolution network
# --------------------------------------------
"""


class USRNet(nn.Module):
    def __init__(self, n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose'):
        super(USRNet, self).__init__()

        self.d = DataNet()
        self.p = ResUNet(in_nc=in_nc, out_nc=out_nc, nc=nc, nb=nb, act_mode=act_mode, downsample_mode=downsample_mode, upsample_mode=upsample_mode)
        self.h = HyPaNet(in_nc=2, out_nc=n_iter*2, channel=h_nc)
        self.n = n_iter

    def forward(self, x, k, sf, sigma):
        '''
        x: tensor, NxCxWxH
        k: tensor, Nx(1,3)xwxh
        sf: integer, 1
        sigma: tensor, Nx1x1x1
        '''

        # initialization & pre-calculation
        w, h = x.shape[-2:]
        FB = p2o(k, (w*sf, h*sf))
        FBC = cconj(FB, inplace=False)
        F2B = r2c(cabs2(FB))
        STy = upsample(x, sf=sf)
        FBFy = cmul(FBC, torch.rfft(STy, 2, onesided=False))
        x = nn.functional.interpolate(x, scale_factor=sf, mode='nearest')

        # hyper-parameter, alpha & beta
        ab = self.h(torch.cat((sigma, torch.tensor(sf).type_as(sigma).expand_as(sigma)), dim=1))

        # unfolding
        for i in range(self.n):
            
            x = self.d(x, FB, FBC, F2B, FBFy, ab[:, i:i+1, ...], sf)
            x = self.p(torch.cat((x, ab[:, i+self.n:i+self.n+1, ...].repeat(1, 1, x.size(2), x.size(3))), dim=1))

        return x