Spaces:
Running
Running
File size: 10,347 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import torch
import torch.nn as nn
import models.basicblock as B
import numpy as np
from utils import utils_image as util
"""
# --------------------------------------------
# Kai Zhang ([email protected])
@inproceedings{zhang2020deep,
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={0--0},
year={2020}
}
# --------------------------------------------
"""
"""
# --------------------------------------------
# basic functions
# --------------------------------------------
"""
def splits(a, sf):
'''split a into sfxsf distinct blocks
Args:
a: NxCxWxHx2
sf: split factor
Returns:
b: NxCx(W/sf)x(H/sf)x2x(sf^2)
'''
b = torch.stack(torch.chunk(a, sf, dim=2), dim=5)
b = torch.cat(torch.chunk(b, sf, dim=3), dim=5)
return b
def c2c(x):
return torch.from_numpy(np.stack([np.float32(x.real), np.float32(x.imag)], axis=-1))
def r2c(x):
# convert real to complex
return torch.stack([x, torch.zeros_like(x)], -1)
def cdiv(x, y):
# complex division
a, b = x[..., 0], x[..., 1]
c, d = y[..., 0], y[..., 1]
cd2 = c**2 + d**2
return torch.stack([(a*c+b*d)/cd2, (b*c-a*d)/cd2], -1)
def crdiv(x, y):
# complex/real division
a, b = x[..., 0], x[..., 1]
return torch.stack([a/y, b/y], -1)
def csum(x, y):
# complex + real
return torch.stack([x[..., 0] + y, x[..., 1]], -1)
def cabs(x):
# modulus of a complex number
return torch.pow(x[..., 0]**2+x[..., 1]**2, 0.5)
def cabs2(x):
return x[..., 0]**2+x[..., 1]**2
def cmul(t1, t2):
'''complex multiplication
Args:
t1: NxCxHxWx2, complex tensor
t2: NxCxHxWx2
Returns:
output: NxCxHxWx2
'''
real1, imag1 = t1[..., 0], t1[..., 1]
real2, imag2 = t2[..., 0], t2[..., 1]
return torch.stack([real1 * real2 - imag1 * imag2, real1 * imag2 + imag1 * real2], dim=-1)
def cconj(t, inplace=False):
'''complex's conjugation
Args:
t: NxCxHxWx2
Returns:
output: NxCxHxWx2
'''
c = t.clone() if not inplace else t
c[..., 1] *= -1
return c
def rfft(t):
# Real-to-complex Discrete Fourier Transform
return torch.rfft(t, 2, onesided=False)
def irfft(t):
# Complex-to-real Inverse Discrete Fourier Transform
return torch.irfft(t, 2, onesided=False)
def fft(t):
# Complex-to-complex Discrete Fourier Transform
return torch.fft(t, 2)
def ifft(t):
# Complex-to-complex Inverse Discrete Fourier Transform
return torch.ifft(t, 2)
def p2o(psf, shape):
'''
Convert point-spread function to optical transfer function.
otf = p2o(psf) computes the Fast Fourier Transform (FFT) of the
point-spread function (PSF) array and creates the optical transfer
function (OTF) array that is not influenced by the PSF off-centering.
Args:
psf: NxCxhxw
shape: [H, W]
Returns:
otf: NxCxHxWx2
'''
otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
for axis, axis_size in enumerate(psf.shape[2:]):
otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
otf = torch.rfft(otf, 2, onesided=False)
n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
otf[..., 1][torch.abs(otf[..., 1]) < n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
return otf
def upsample(x, sf=3):
'''s-fold upsampler
Upsampling the spatial size by filling the new entries with zeros
x: tensor image, NxCxWxH
'''
st = 0
z = torch.zeros((x.shape[0], x.shape[1], x.shape[2]*sf, x.shape[3]*sf)).type_as(x)
z[..., st::sf, st::sf].copy_(x)
return z
def downsample(x, sf=3):
'''s-fold downsampler
Keeping the upper-left pixel for each distinct sfxsf patch and discarding the others
x: tensor image, NxCxWxH
'''
st = 0
return x[..., st::sf, st::sf]
def downsample_np(x, sf=3):
st = 0
return x[st::sf, st::sf, ...]
"""
# --------------------------------------------
# (1) Prior module; ResUNet: act as a non-blind denoiser
# x_k = P(z_k, beta_k)
# --------------------------------------------
"""
class ResUNet(nn.Module):
def __init__(self, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose'):
super(ResUNet, self).__init__()
self.m_head = B.conv(in_nc, nc[0], bias=False, mode='C')
# downsample
if downsample_mode == 'avgpool':
downsample_block = B.downsample_avgpool
elif downsample_mode == 'maxpool':
downsample_block = B.downsample_maxpool
elif downsample_mode == 'strideconv':
downsample_block = B.downsample_strideconv
else:
raise NotImplementedError('downsample mode [{:s}] is not found'.format(downsample_mode))
self.m_down1 = B.sequential(*[B.ResBlock(nc[0], nc[0], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[0], nc[1], bias=False, mode='2'))
self.m_down2 = B.sequential(*[B.ResBlock(nc[1], nc[1], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[1], nc[2], bias=False, mode='2'))
self.m_down3 = B.sequential(*[B.ResBlock(nc[2], nc[2], bias=False, mode='C'+act_mode+'C') for _ in range(nb)], downsample_block(nc[2], nc[3], bias=False, mode='2'))
self.m_body = B.sequential(*[B.ResBlock(nc[3], nc[3], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])
# upsample
if upsample_mode == 'upconv':
upsample_block = B.upsample_upconv
elif upsample_mode == 'pixelshuffle':
upsample_block = B.upsample_pixelshuffle
elif upsample_mode == 'convtranspose':
upsample_block = B.upsample_convtranspose
else:
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
self.m_up3 = B.sequential(upsample_block(nc[3], nc[2], bias=False, mode='2'), *[B.ResBlock(nc[2], nc[2], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])
self.m_up2 = B.sequential(upsample_block(nc[2], nc[1], bias=False, mode='2'), *[B.ResBlock(nc[1], nc[1], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])
self.m_up1 = B.sequential(upsample_block(nc[1], nc[0], bias=False, mode='2'), *[B.ResBlock(nc[0], nc[0], bias=False, mode='C'+act_mode+'C') for _ in range(nb)])
self.m_tail = B.conv(nc[0], out_nc, bias=False, mode='C')
def forward(self, x):
h, w = x.size()[-2:]
paddingBottom = int(np.ceil(h/8)*8-h)
paddingRight = int(np.ceil(w/8)*8-w)
x = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x)
x1 = self.m_head(x)
x2 = self.m_down1(x1)
x3 = self.m_down2(x2)
x4 = self.m_down3(x3)
x = self.m_body(x4)
x = self.m_up3(x+x4)
x = self.m_up2(x+x3)
x = self.m_up1(x+x2)
x = self.m_tail(x+x1)
x = x[..., :h, :w]
return x
"""
# --------------------------------------------
# (2) Data module, closed-form solution
# It is a trainable-parameter-free module ^_^
# z_k = D(x_{k-1}, s, k, y, alpha_k)
# some can be pre-calculated
# --------------------------------------------
"""
class DataNet(nn.Module):
def __init__(self):
super(DataNet, self).__init__()
def forward(self, x, FB, FBC, F2B, FBFy, alpha, sf):
FR = FBFy + torch.rfft(alpha*x, 2, onesided=False)
x1 = cmul(FB, FR)
FBR = torch.mean(splits(x1, sf), dim=-1, keepdim=False)
invW = torch.mean(splits(F2B, sf), dim=-1, keepdim=False)
invWBR = cdiv(FBR, csum(invW, alpha))
FCBinvWBR = cmul(FBC, invWBR.repeat(1, 1, sf, sf, 1))
FX = (FR-FCBinvWBR)/alpha.unsqueeze(-1)
Xest = torch.irfft(FX, 2, onesided=False)
return Xest
"""
# --------------------------------------------
# (3) Hyper-parameter module
# --------------------------------------------
"""
class HyPaNet(nn.Module):
def __init__(self, in_nc=2, out_nc=8, channel=64):
super(HyPaNet, self).__init__()
self.mlp = nn.Sequential(
nn.Conv2d(in_nc, channel, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel, channel, 1, padding=0, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(channel, out_nc, 1, padding=0, bias=True),
nn.Softplus())
def forward(self, x):
x = self.mlp(x) + 1e-6
return x
"""
# --------------------------------------------
# main USRNet
# deep unfolding super-resolution network
# --------------------------------------------
"""
class USRNet(nn.Module):
def __init__(self, n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], nb=2, act_mode='R', downsample_mode='strideconv', upsample_mode='convtranspose'):
super(USRNet, self).__init__()
self.d = DataNet()
self.p = ResUNet(in_nc=in_nc, out_nc=out_nc, nc=nc, nb=nb, act_mode=act_mode, downsample_mode=downsample_mode, upsample_mode=upsample_mode)
self.h = HyPaNet(in_nc=2, out_nc=n_iter*2, channel=h_nc)
self.n = n_iter
def forward(self, x, k, sf, sigma):
'''
x: tensor, NxCxWxH
k: tensor, Nx(1,3)xwxh
sf: integer, 1
sigma: tensor, Nx1x1x1
'''
# initialization & pre-calculation
w, h = x.shape[-2:]
FB = p2o(k, (w*sf, h*sf))
FBC = cconj(FB, inplace=False)
F2B = r2c(cabs2(FB))
STy = upsample(x, sf=sf)
FBFy = cmul(FBC, torch.rfft(STy, 2, onesided=False))
x = nn.functional.interpolate(x, scale_factor=sf, mode='nearest')
# hyper-parameter, alpha & beta
ab = self.h(torch.cat((sigma, torch.tensor(sf).type_as(sigma).expand_as(sigma)), dim=1))
# unfolding
for i in range(self.n):
x = self.d(x, FB, FBC, F2B, FBFy, ab[:, i:i+1, ...], sf)
x = self.p(torch.cat((x, ab[:, i+self.n:i+self.n+1, ...].repeat(1, 1, x.size(2), x.size(3))), dim=1))
return x
|