File size: 6,298 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

import torch.nn as nn
import models.basicblock as B


"""
# --------------------------------------------
# DnCNN (20 conv layers)
# FDnCNN (20 conv layers)
# IRCNN (7 conv layers)
# --------------------------------------------
# References:
@article{zhang2017beyond,
  title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={7},
  pages={3142--3155},
  year={2017},
  publisher={IEEE}
}
@article{zhang2018ffdnet,
  title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={27},
  number={9},
  pages={4608--4622},
  year={2018},
  publisher={IEEE}
}
# --------------------------------------------
"""


# --------------------------------------------
# DnCNN
# --------------------------------------------
class DnCNN(nn.Module):
    def __init__(self, in_nc=1, out_nc=1, nc=64, nb=17, act_mode='BR'):
        """
        # ------------------------------------
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        # ------------------------------------
        Batch normalization and residual learning are
        beneficial to Gaussian denoising (especially
        for a single noise level).
        The residual of a noisy image corrupted by additive white
        Gaussian noise (AWGN) follows a constant
        Gaussian distribution which stablizes batch
        normalization during training.
        # ------------------------------------
        """
        super(DnCNN, self).__init__()
        assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL'
        bias = True

        m_head = B.conv(in_nc, nc, mode='C'+act_mode[-1], bias=bias)
        m_body = [B.conv(nc, nc, mode='C'+act_mode, bias=bias) for _ in range(nb-2)]
        m_tail = B.conv(nc, out_nc, mode='C', bias=bias)

        self.model = B.sequential(m_head, *m_body, m_tail)

    def forward(self, x):
        n = self.model(x)
        return x-n


# --------------------------------------------
# IRCNN denoiser
# --------------------------------------------
class IRCNN(nn.Module):
    def __init__(self, in_nc=1, out_nc=1, nc=64):
        """
        # ------------------------------------
        denoiser of IRCNN
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        # ------------------------------------
        Batch normalization and residual learning are
        beneficial to Gaussian denoising (especially
        for a single noise level).
        The residual of a noisy image corrupted by additive white
        Gaussian noise (AWGN) follows a constant
        Gaussian distribution which stablizes batch
        normalization during training.
        # ------------------------------------
        """
        super(IRCNN, self).__init__()
        L =[]
        L.append(nn.Conv2d(in_channels=in_nc, out_channels=nc, kernel_size=3, stride=1, padding=1, dilation=1, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=2, dilation=2, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=3, dilation=3, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=4, dilation=4, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=3, dilation=3, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=2, dilation=2, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=out_nc, kernel_size=3, stride=1, padding=1, dilation=1, bias=True))
        self.model = B.sequential(*L)

    def forward(self, x):
        n = self.model(x)
        return x-n


# --------------------------------------------
# FDnCNN
# --------------------------------------------
# Compared with DnCNN, FDnCNN has three modifications:
# 1) add noise level map as input
# 2) remove residual learning and BN
# 3) train with L1 loss
# may need more training time, but will not reduce the final PSNR too much.
# --------------------------------------------
class FDnCNN(nn.Module):
    def __init__(self, in_nc=2, out_nc=1, nc=64, nb=20, act_mode='R'):
        """
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        """
        super(FDnCNN, self).__init__()
        assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL'
        bias = True

        m_head = B.conv(in_nc, nc, mode='C'+act_mode[-1], bias=bias)
        m_body = [B.conv(nc, nc, mode='C'+act_mode, bias=bias) for _ in range(nb-2)]
        m_tail = B.conv(nc, out_nc, mode='C', bias=bias)

        self.model = B.sequential(m_head, *m_body, m_tail)

    def forward(self, x):
        x = self.model(x)
        return x


if __name__ == '__main__':
    from utils import utils_model
    import torch
    model1 = DnCNN(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='BR')
    print(utils_model.describe_model(model1))

    model2 = FDnCNN(in_nc=2, out_nc=1, nc=64, nb=20, act_mode='R')
    print(utils_model.describe_model(model2))

    x = torch.randn((1, 1, 240, 240))
    x1 = model1(x)
    print(x1.shape)

    x = torch.randn((1, 2, 240, 240))
    x2 = model2(x)
    print(x2.shape)

    #  run models/network_dncnn.py