Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 6,298 Bytes
			
			| 2514fb4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | 
import torch.nn as nn
import models.basicblock as B
"""
# --------------------------------------------
# DnCNN (20 conv layers)
# FDnCNN (20 conv layers)
# IRCNN (7 conv layers)
# --------------------------------------------
# References:
@article{zhang2017beyond,
  title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={7},
  pages={3142--3155},
  year={2017},
  publisher={IEEE}
}
@article{zhang2018ffdnet,
  title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={27},
  number={9},
  pages={4608--4622},
  year={2018},
  publisher={IEEE}
}
# --------------------------------------------
"""
# --------------------------------------------
# DnCNN
# --------------------------------------------
class DnCNN(nn.Module):
    def __init__(self, in_nc=1, out_nc=1, nc=64, nb=17, act_mode='BR'):
        """
        # ------------------------------------
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        # ------------------------------------
        Batch normalization and residual learning are
        beneficial to Gaussian denoising (especially
        for a single noise level).
        The residual of a noisy image corrupted by additive white
        Gaussian noise (AWGN) follows a constant
        Gaussian distribution which stablizes batch
        normalization during training.
        # ------------------------------------
        """
        super(DnCNN, self).__init__()
        assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL'
        bias = True
        m_head = B.conv(in_nc, nc, mode='C'+act_mode[-1], bias=bias)
        m_body = [B.conv(nc, nc, mode='C'+act_mode, bias=bias) for _ in range(nb-2)]
        m_tail = B.conv(nc, out_nc, mode='C', bias=bias)
        self.model = B.sequential(m_head, *m_body, m_tail)
    def forward(self, x):
        n = self.model(x)
        return x-n
# --------------------------------------------
# IRCNN denoiser
# --------------------------------------------
class IRCNN(nn.Module):
    def __init__(self, in_nc=1, out_nc=1, nc=64):
        """
        # ------------------------------------
        denoiser of IRCNN
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        # ------------------------------------
        Batch normalization and residual learning are
        beneficial to Gaussian denoising (especially
        for a single noise level).
        The residual of a noisy image corrupted by additive white
        Gaussian noise (AWGN) follows a constant
        Gaussian distribution which stablizes batch
        normalization during training.
        # ------------------------------------
        """
        super(IRCNN, self).__init__()
        L =[]
        L.append(nn.Conv2d(in_channels=in_nc, out_channels=nc, kernel_size=3, stride=1, padding=1, dilation=1, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=2, dilation=2, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=3, dilation=3, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=4, dilation=4, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=3, dilation=3, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=nc, kernel_size=3, stride=1, padding=2, dilation=2, bias=True))
        L.append(nn.ReLU(inplace=True))
        L.append(nn.Conv2d(in_channels=nc, out_channels=out_nc, kernel_size=3, stride=1, padding=1, dilation=1, bias=True))
        self.model = B.sequential(*L)
    def forward(self, x):
        n = self.model(x)
        return x-n
# --------------------------------------------
# FDnCNN
# --------------------------------------------
# Compared with DnCNN, FDnCNN has three modifications:
# 1) add noise level map as input
# 2) remove residual learning and BN
# 3) train with L1 loss
# may need more training time, but will not reduce the final PSNR too much.
# --------------------------------------------
class FDnCNN(nn.Module):
    def __init__(self, in_nc=2, out_nc=1, nc=64, nb=20, act_mode='R'):
        """
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        """
        super(FDnCNN, self).__init__()
        assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL'
        bias = True
        m_head = B.conv(in_nc, nc, mode='C'+act_mode[-1], bias=bias)
        m_body = [B.conv(nc, nc, mode='C'+act_mode, bias=bias) for _ in range(nb-2)]
        m_tail = B.conv(nc, out_nc, mode='C', bias=bias)
        self.model = B.sequential(m_head, *m_body, m_tail)
    def forward(self, x):
        x = self.model(x)
        return x
if __name__ == '__main__':
    from utils import utils_model
    import torch
    model1 = DnCNN(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='BR')
    print(utils_model.describe_model(model1))
    model2 = FDnCNN(in_nc=2, out_nc=1, nc=64, nb=20, act_mode='R')
    print(utils_model.describe_model(model2))
    x = torch.randn((1, 1, 240, 240))
    x1 = model1(x)
    print(x1.shape)
    x = torch.randn((1, 2, 240, 240))
    x2 = model2(x)
    print(x2.shape)
    #  run models/network_dncnn.py
 | 
