File size: 13,231 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm
import models.basicblock as B
import functools
import numpy as np


"""
# --------------------------------------------
# Discriminator_PatchGAN
# Discriminator_UNet
# --------------------------------------------
"""


# --------------------------------------------
# PatchGAN discriminator
# If n_layers = 3, then the receptive field is 70x70
# --------------------------------------------
class Discriminator_PatchGAN(nn.Module):
    def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_type='spectral'):
        '''PatchGAN discriminator, receptive field = 70x70 if n_layers = 3
        Args:
            input_nc: number of input channels 
            ndf: base channel number
            n_layers: number of conv layer with stride 2
            norm_type:  'batch', 'instance', 'spectral', 'batchspectral', instancespectral'
        Returns:
            tensor: score
        '''
        super(Discriminator_PatchGAN, self).__init__()
        self.n_layers = n_layers
        norm_layer = self.get_norm_layer(norm_type=norm_type)

        kw = 4
        padw = int(np.ceil((kw - 1.0) / 2))
        sequence = [[self.use_spectral_norm(nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), norm_type), nn.LeakyReLU(0.2, True)]]

        nf = ndf
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)
            sequence += [[self.use_spectral_norm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), norm_type),
                          norm_layer(nf), 
                          nn.LeakyReLU(0.2, True)]]

        nf_prev = nf
        nf = min(nf * 2, 512)
        sequence += [[self.use_spectral_norm(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), norm_type),
                      norm_layer(nf),
                      nn.LeakyReLU(0.2, True)]]

        sequence += [[self.use_spectral_norm(nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw), norm_type)]]

        self.model = nn.Sequential()
        for n in range(len(sequence)):
            self.model.add_module('child' + str(n), nn.Sequential(*sequence[n]))

        self.model.apply(self.weights_init)

    def use_spectral_norm(self, module, norm_type='spectral'):
        if 'spectral' in norm_type:
            return spectral_norm(module)
        return module

    def get_norm_layer(self, norm_type='instance'):
        if 'batch' in norm_type:
            norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
        elif 'instance' in norm_type:
            norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
        else:
            norm_layer = functools.partial(nn.Identity)
        return norm_layer

    def weights_init(self, m):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            m.weight.data.normal_(0.0, 0.02)
        elif classname.find('BatchNorm2d') != -1:
            m.weight.data.normal_(1.0, 0.02)
            m.bias.data.fill_(0)

    def forward(self, x):
        return self.model(x)


class Discriminator_UNet(nn.Module):
    """Defines a U-Net discriminator with spectral normalization (SN)"""

    def __init__(self, input_nc=3, ndf=64):
        super(Discriminator_UNet, self).__init__()
        norm = spectral_norm

        self.conv0 = nn.Conv2d(input_nc, ndf, kernel_size=3, stride=1, padding=1)

        self.conv1 = norm(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False))
        self.conv2 = norm(nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False))
        self.conv3 = norm(nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False))
        # upsample
        self.conv4 = norm(nn.Conv2d(ndf * 8, ndf * 4, 3, 1, 1, bias=False))
        self.conv5 = norm(nn.Conv2d(ndf * 4, ndf * 2, 3, 1, 1, bias=False))
        self.conv6 = norm(nn.Conv2d(ndf * 2, ndf, 3, 1, 1, bias=False))

        # extra
        self.conv7 = norm(nn.Conv2d(ndf, ndf, 3, 1, 1, bias=False))
        self.conv8 = norm(nn.Conv2d(ndf, ndf, 3, 1, 1, bias=False))

        self.conv9 = nn.Conv2d(ndf, 1, 3, 1, 1)
        print('using the UNet discriminator')

    def forward(self, x):
        x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
        x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
        x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
        x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)

        # upsample
        x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
        x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)

        x4 = x4 + x2
        x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
        x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)

        x5 = x5 + x1
        x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
        x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)

        x6 = x6 + x0

        # extra
        out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
        out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
        out = self.conv9(out)

        return out


# --------------------------------------------
# VGG style Discriminator with 96x96 input
# --------------------------------------------
class Discriminator_VGG_96(nn.Module):
    def __init__(self, in_nc=3, base_nc=64, ac_type='BL'):
        super(Discriminator_VGG_96, self).__init__()
        # features
        # hxw, c
        # 96, 64
        conv0 = B.conv(in_nc, base_nc, kernel_size=3, mode='C')
        conv1 = B.conv(base_nc, base_nc, kernel_size=4, stride=2, mode='C'+ac_type)
        # 48, 64
        conv2 = B.conv(base_nc, base_nc*2, kernel_size=3, stride=1, mode='C'+ac_type)
        conv3 = B.conv(base_nc*2, base_nc*2, kernel_size=4, stride=2, mode='C'+ac_type)
        # 24, 128
        conv4 = B.conv(base_nc*2, base_nc*4, kernel_size=3, stride=1, mode='C'+ac_type)
        conv5 = B.conv(base_nc*4, base_nc*4, kernel_size=4, stride=2, mode='C'+ac_type)
        # 12, 256
        conv6 = B.conv(base_nc*4, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv7 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 6, 512
        conv8 = B.conv(base_nc*8, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv9 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 3, 512
        self.features = B.sequential(conv0, conv1, conv2, conv3, conv4,
                                     conv5, conv6, conv7, conv8, conv9)

        # classifier
        self.classifier = nn.Sequential(
            nn.Linear(512 * 3 * 3, 100), nn.LeakyReLU(0.2, True), nn.Linear(100, 1))

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


# --------------------------------------------
# VGG style Discriminator with 128x128 input
# --------------------------------------------
class Discriminator_VGG_128(nn.Module):
    def __init__(self, in_nc=3, base_nc=64, ac_type='BL'):
        super(Discriminator_VGG_128, self).__init__()
        # features
        # hxw, c
        # 128, 64
        conv0 = B.conv(in_nc, base_nc, kernel_size=3, mode='C')
        conv1 = B.conv(base_nc, base_nc, kernel_size=4, stride=2, mode='C'+ac_type)
        # 64, 64
        conv2 = B.conv(base_nc, base_nc*2, kernel_size=3, stride=1, mode='C'+ac_type)
        conv3 = B.conv(base_nc*2, base_nc*2, kernel_size=4, stride=2, mode='C'+ac_type)
        # 32, 128
        conv4 = B.conv(base_nc*2, base_nc*4, kernel_size=3, stride=1, mode='C'+ac_type)
        conv5 = B.conv(base_nc*4, base_nc*4, kernel_size=4, stride=2, mode='C'+ac_type)
        # 16, 256
        conv6 = B.conv(base_nc*4, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv7 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 8, 512
        conv8 = B.conv(base_nc*8, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv9 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 4, 512
        self.features = B.sequential(conv0, conv1, conv2, conv3, conv4,
                                     conv5, conv6, conv7, conv8, conv9)

        # classifier
        self.classifier = nn.Sequential(nn.Linear(512 * 4 * 4, 100), 
                                        nn.LeakyReLU(0.2, True), 
                                        nn.Linear(100, 1))

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


# --------------------------------------------
# VGG style Discriminator with 192x192 input
# --------------------------------------------
class Discriminator_VGG_192(nn.Module):
    def __init__(self, in_nc=3, base_nc=64, ac_type='BL'):
        super(Discriminator_VGG_192, self).__init__()
        # features
        # hxw, c
        # 192, 64
        conv0 = B.conv(in_nc, base_nc, kernel_size=3, mode='C')
        conv1 = B.conv(base_nc, base_nc, kernel_size=4, stride=2, mode='C'+ac_type)
        # 96, 64
        conv2 = B.conv(base_nc, base_nc*2, kernel_size=3, stride=1, mode='C'+ac_type)
        conv3 = B.conv(base_nc*2, base_nc*2, kernel_size=4, stride=2, mode='C'+ac_type)
        # 48, 128
        conv4 = B.conv(base_nc*2, base_nc*4, kernel_size=3, stride=1, mode='C'+ac_type)
        conv5 = B.conv(base_nc*4, base_nc*4, kernel_size=4, stride=2, mode='C'+ac_type)
        # 24, 256
        conv6 = B.conv(base_nc*4, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv7 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 12, 512
        conv8 = B.conv(base_nc*8, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv9 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 6, 512
        conv10 = B.conv(base_nc*8, base_nc*8, kernel_size=3, stride=1, mode='C'+ac_type)
        conv11 = B.conv(base_nc*8, base_nc*8, kernel_size=4, stride=2, mode='C'+ac_type)
        # 3, 512
        self.features = B.sequential(conv0, conv1, conv2, conv3, conv4, conv5,
                                     conv6, conv7, conv8, conv9, conv10, conv11)

        # classifier
        self.classifier = nn.Sequential(nn.Linear(512 * 3 * 3, 100),
                                        nn.LeakyReLU(0.2, True),
                                        nn.Linear(100, 1))

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


# --------------------------------------------
# SN-VGG style Discriminator with 128x128 input
# --------------------------------------------
class Discriminator_VGG_128_SN(nn.Module):
    def __init__(self):
        super(Discriminator_VGG_128_SN, self).__init__()
        # features
        # hxw, c
        # 128, 64
        self.lrelu = nn.LeakyReLU(0.2, True)

        self.conv0 = spectral_norm(nn.Conv2d(3, 64, 3, 1, 1))
        self.conv1 = spectral_norm(nn.Conv2d(64, 64, 4, 2, 1))
        # 64, 64
        self.conv2 = spectral_norm(nn.Conv2d(64, 128, 3, 1, 1))
        self.conv3 = spectral_norm(nn.Conv2d(128, 128, 4, 2, 1))
        # 32, 128
        self.conv4 = spectral_norm(nn.Conv2d(128, 256, 3, 1, 1))
        self.conv5 = spectral_norm(nn.Conv2d(256, 256, 4, 2, 1))
        # 16, 256
        self.conv6 = spectral_norm(nn.Conv2d(256, 512, 3, 1, 1))
        self.conv7 = spectral_norm(nn.Conv2d(512, 512, 4, 2, 1))
        # 8, 512
        self.conv8 = spectral_norm(nn.Conv2d(512, 512, 3, 1, 1))
        self.conv9 = spectral_norm(nn.Conv2d(512, 512, 4, 2, 1))
        # 4, 512

        # classifier
        self.linear0 = spectral_norm(nn.Linear(512 * 4 * 4, 100))
        self.linear1 = spectral_norm(nn.Linear(100, 1))

    def forward(self, x):
        x = self.lrelu(self.conv0(x))
        x = self.lrelu(self.conv1(x))
        x = self.lrelu(self.conv2(x))
        x = self.lrelu(self.conv3(x))
        x = self.lrelu(self.conv4(x))
        x = self.lrelu(self.conv5(x))
        x = self.lrelu(self.conv6(x))
        x = self.lrelu(self.conv7(x))
        x = self.lrelu(self.conv8(x))
        x = self.lrelu(self.conv9(x))
        x = x.view(x.size(0), -1)
        x = self.lrelu(self.linear0(x))
        x = self.linear1(x)
        return x


if __name__ == '__main__':

    x = torch.rand(1, 3, 96, 96)
    net = Discriminator_VGG_96()
    net.eval()
    with torch.no_grad():
        y = net(x)
    print(y.size())

    x = torch.rand(1, 3, 128, 128)
    net = Discriminator_VGG_128()
    net.eval()
    with torch.no_grad():
        y = net(x)
    print(y.size())

    x = torch.rand(1, 3, 192, 192)
    net = Discriminator_VGG_192()
    net.eval()
    with torch.no_grad():
        y = net(x)
    print(y.size())

    x = torch.rand(1, 3, 128, 128)
    net = Discriminator_VGG_128_SN()
    net.eval()
    with torch.no_grad():
        y = net(x)
    print(y.size())

    # run models/network_discriminator.py