Spaces:
Running
Running
File size: 7,640 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import os.path
import logging
import argparse
import numpy as np
from datetime import datetime
from collections import OrderedDict
# from scipy.io import loadmat
import torch
from utils import utils_logger
from utils import utils_model
from utils import utils_image as util
'''
Spyder (Python 3.6)
PyTorch 1.1.0
Windows 10 or Linux
Kai Zhang ([email protected])
github: https://github.com/cszn/KAIR
https://github.com/cszn/DnCNN
@article{zhang2017beyond,
title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
journal={IEEE Transactions on Image Processing},
volume={26},
number={7},
pages={3142--3155},
year={2017},
publisher={IEEE}
}
% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: [email protected]; github: https://github.com/cszn)
by Kai Zhang (12/Dec./2019)
'''
"""
# --------------------------------------------
|--model_zoo # model_zoo
|--dncnn_15 # model_name
|--dncnn_25
|--dncnn_50
|--dncnn_gray_blind
|--dncnn_color_blind
|--dncnn3
|--testset # testsets
|--set12 # testset_name
|--bsd68
|--cbsd68
|--results # results
|--set12_dncnn_15 # result_name = testset_name + '_' + model_name
|--set12_dncnn_25
|--bsd68_dncnn_15
# --------------------------------------------
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='dncnn_25', help='dncnn_15, dncnn_25, dncnn_50, dncnn_gray_blind, dncnn_color_blind, dncnn3')
parser.add_argument('--testset_name', type=str, default='set12', help='test set, bsd68 | set12')
parser.add_argument('--noise_level_img', type=int, default=15, help='noise level: 15, 25, 50')
parser.add_argument('--x8', type=bool, default=False, help='x8 to boost performance')
parser.add_argument('--show_img', type=bool, default=False, help='show the image')
parser.add_argument('--model_pool', type=str, default='model_zoo', help='path of model_zoo')
parser.add_argument('--testsets', type=str, default='testsets', help='path of testing folder')
parser.add_argument('--results', type=str, default='results', help='path of results')
parser.add_argument('--need_degradation', type=bool, default=True, help='add noise or not')
parser.add_argument('--task_current', type=str, default='dn', help='dn for denoising, fixed!')
parser.add_argument('--sf', type=int, default=1, help='unused for denoising')
args = parser.parse_args()
if 'color' in args.model_name:
n_channels = 3 # fixed, 1 for grayscale image, 3 for color image
else:
n_channels = 1 # fixed for grayscale image
if args.model_name in ['dncnn_gray_blind', 'dncnn_color_blind', 'dncnn3']:
nb = 20 # fixed
else:
nb = 17 # fixed
result_name = args.testset_name + '_' + args.model_name # fixed
border = args.sf if args.task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM
model_path = os.path.join(args.model_pool, args.model_name+'.pth')
# ----------------------------------------
# L_path, E_path, H_path
# ----------------------------------------
L_path = os.path.join(args.testsets, args.testset_name) # L_path, for Low-quality images
H_path = L_path # H_path, for High-quality images
E_path = os.path.join(args.results, result_name) # E_path, for Estimated images
util.mkdir(E_path)
if H_path == L_path:
args.need_degradation = True
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
need_H = True if H_path is not None else False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# ----------------------------------------
# load model
# ----------------------------------------
from models.network_dncnn import DnCNN as net
model = net(in_nc=n_channels, out_nc=n_channels, nc=64, nb=nb, act_mode='R')
# model = net(in_nc=n_channels, out_nc=n_channels, nc=64, nb=nb, act_mode='BR') # use this if BN is not merged by utils_bnorm.merge_bn(model)
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path: {:s}'.format(model_path))
number_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('Params number: {}'.format(number_parameters))
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
logger.info('model_name:{}, image sigma:{}'.format(args.model_name, args.noise_level_img))
logger.info(L_path)
L_paths = util.get_image_paths(L_path)
H_paths = util.get_image_paths(H_path) if need_H else None
for idx, img in enumerate(L_paths):
# ------------------------------------
# (1) img_L
# ------------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
# logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext))
img_L = util.imread_uint(img, n_channels=n_channels)
img_L = util.uint2single(img_L)
if args.need_degradation: # degradation process
np.random.seed(seed=0) # for reproducibility
img_L += np.random.normal(0, args.noise_level_img/255., img_L.shape)
util.imshow(util.single2uint(img_L), title='Noisy image with noise level {}'.format(args.noise_level_img)) if args.show_img else None
img_L = util.single2tensor4(img_L)
img_L = img_L.to(device)
# ------------------------------------
# (2) img_E
# ------------------------------------
if not args.x8:
img_E = model(img_L)
else:
img_E = utils_model.test_mode(model, img_L, mode=3)
img_E = util.tensor2uint(img_E)
if need_H:
# --------------------------------
# (3) img_H
# --------------------------------
img_H = util.imread_uint(H_paths[idx], n_channels=n_channels)
img_H = img_H.squeeze()
# --------------------------------
# PSNR and SSIM
# --------------------------------
psnr = util.calculate_psnr(img_E, img_H, border=border)
ssim = util.calculate_ssim(img_E, img_H, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim))
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if args.show_img else None
# ------------------------------------
# save results
# ------------------------------------
util.imsave(img_E, os.path.join(E_path, img_name+ext))
if need_H:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
logger.info('Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, ave_psnr, ave_ssim))
if __name__ == '__main__':
main()
|