Spaces:
Running
Running
File size: 7,627 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import math
import numpy as np
import random
import torch
import torch.utils.data as data
import utils.utils_image as util
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.utils import DiffJPEG, USMSharp
from numpy.typing import NDArray
from PIL import Image
from utils.utils_video import img2tensor
from torch import Tensor
from data.degradations import apply_real_esrgan_degradations
class DatasetSR(data.Dataset):
'''
# -----------------------------------------
# Get L/H for SISR.
# If only "paths_H" is provided, sythesize bicubicly downsampled L on-the-fly.
# -----------------------------------------
# e.g., SRResNet
# -----------------------------------------
'''
def __init__(self, opt):
super(DatasetSR, self).__init__()
self.opt = opt
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
self.sf = opt['scale'] if opt['scale'] else 4
self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96
self.L_size = self.patch_size // self.sf
# ------------------------------------
# get paths of L/H
# ------------------------------------
self.paths_H = util.get_image_paths(opt['dataroot_H'])
self.paths_L = util.get_image_paths(opt['dataroot_L'])
assert self.paths_H, 'Error: H path is empty.'
if self.paths_L and self.paths_H:
assert len(self.paths_L) == len(self.paths_H), 'L/H mismatch - {}, {}.'.format(len(self.paths_L), len(self.paths_H))
self.jpeg_simulator = DiffJPEG()
self.usm_sharpener = USMSharp()
blur_kernel_list1 = ['iso', 'aniso', 'generalized_iso',
'generalized_aniso', 'plateau_iso', 'plateau_aniso']
blur_kernel_list2 = ['iso', 'aniso', 'generalized_iso',
'generalized_aniso', 'plateau_iso', 'plateau_aniso']
blur_kernel_prob1 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
blur_kernel_prob2 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
kernel_size = 21
blur_sigma1 = [0.05, 0.2]
blur_sigma2 = [0.05, 0.1]
betag_range1 = [0.7, 1.3]
betag_range2 = [0.7, 1.3]
betap_range1 = [0.7, 1.3]
betap_range2 = [0.7, 1.3]
def _decide_kernels(self) -> NDArray:
blur_kernel1 = random_mixed_kernels(
self.blur_kernel_list1,
self.blur_kernel_prob1,
self.kernel_size,
self.blur_sigma1,
self.blur_sigma1, [-math.pi, math.pi],
self.betag_range1,
self.betap_range1,
noise_range=None
)
blur_kernel2 = random_mixed_kernels(
self.blur_kernel_list2,
self.blur_kernel_prob2,
self.kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None
)
if self.kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, self.kernel_size, pad_to=21)
return (blur_kernel1, blur_kernel2, sinc_kernel)
def __getitem__(self, index):
L_path = None
# ------------------------------------
# get H image
# ------------------------------------
H_path = self.paths_H[index]
img_H = util.imread_uint(H_path, self.n_channels)
img_H = util.uint2single(img_H)
# ------------------------------------
# modcrop
# ------------------------------------
img_H = util.modcrop(img_H, self.sf)
# ------------------------------------
# get L image
# ------------------------------------
if self.paths_L:
# --------------------------------
# directly load L image
# --------------------------------
L_path = self.paths_L[index]
img_L = util.imread_uint(L_path, self.n_channels)
img_L = util.uint2single(img_L)
else:
# --------------------------------
# sythesize L image via matlab's bicubic
# --------------------------------
H, W = img_H.shape[:2]
img_L = util.imresize_np(img_H, 1 / self.sf, True)
src_tensor = img2tensor(img_L.copy(), bgr2rgb=False,
float32=True).unsqueeze(0)
blur_kernel1, blur_kernel2, sinc_kernel = self._decide_kernels()
(img_L_2, sharp_img_L, degraded_img_L) = apply_real_esrgan_degradations(
src_tensor,
blur_kernel1=Tensor(blur_kernel1).unsqueeze(0),
blur_kernel2=Tensor(blur_kernel2).unsqueeze(0),
second_blur_prob=0.2,
sinc_kernel=Tensor(sinc_kernel).unsqueeze(0),
resize_prob1=[0.2, 0.7, 0.1],
resize_prob2=[0.3, 0.4, 0.3],
resize_range1=[0.9, 1.1],
resize_range2=[0.9, 1.1],
gray_noise_prob1=0.2,
gray_noise_prob2=0.2,
gaussian_noise_prob1=0.2,
gaussian_noise_prob2=0.2,
noise_range=[0.01, 0.2],
poisson_scale_range=[0.05, 0.45],
jpeg_compression_range1=[85, 100],
jpeg_compression_range2=[85, 100],
jpeg_simulator=self.jpeg_simulator,
random_crop_gt_size=256,
sr_upsample_scale=1,
usm_sharpener=self.usm_sharpener
)
# Image.fromarray((degraded_img_L[0] * 255).permute(
# 1, 2, 0).cpu().numpy().astype(np.uint8)).save(
# "/home/cll/Desktop/degraded_L.png")
# Image.fromarray((img_L * 255).astype(np.uint8)).save(
# "/home/cll/Desktop/img_L.png")
# Image.fromarray((img_L_2[0] * 255).permute(
# 1, 2, 0).cpu().numpy().astype(np.uint8)).save(
# "/home/cll/Desktop/img_L_2.png")
# exit()
# ------------------------------------
# if train, get L/H patch pair
# ------------------------------------
if self.opt['phase'] == 'train':
H, W, C = img_L.shape
# --------------------------------
# randomly crop the L patch
# --------------------------------
rnd_h = random.randint(0, max(0, H - self.L_size))
rnd_w = random.randint(0, max(0, W - self.L_size))
img_L = img_L[rnd_h:rnd_h + self.L_size, rnd_w:rnd_w + self.L_size, :]
# --------------------------------
# crop corresponding H patch
# --------------------------------
rnd_h_H, rnd_w_H = int(rnd_h * self.sf), int(rnd_w * self.sf)
img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size, rnd_w_H:rnd_w_H + self.patch_size, :]
# --------------------------------
# augmentation - flip and/or rotate + RealESRGAN modified degradations
# --------------------------------
mode = random.randint(0, 7)
img_L, img_H = util.augment_img(img_L, mode=mode), util.augment_img(img_H, mode=mode)
# ------------------------------------
# L/H pairs, HWC to CHW, numpy to tensor
# ------------------------------------
img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L)
if L_path is None:
L_path = H_path
return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path}
def __len__(self):
return len(self.paths_H)
|