File size: 7,627 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
import numpy as np
import random
import torch
import torch.utils.data as data
import utils.utils_image as util
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.utils import DiffJPEG, USMSharp
from numpy.typing import NDArray
from PIL import Image
from utils.utils_video import img2tensor
from torch import Tensor

from data.degradations import apply_real_esrgan_degradations

class DatasetSR(data.Dataset):
    '''
    # -----------------------------------------
    # Get L/H for SISR.
    # If only "paths_H" is provided, sythesize bicubicly downsampled L on-the-fly.
    # -----------------------------------------
    # e.g., SRResNet
    # -----------------------------------------
    '''

    def __init__(self, opt):
        super(DatasetSR, self).__init__()
        self.opt = opt
        self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
        self.sf = opt['scale'] if opt['scale'] else 4
        self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96
        self.L_size = self.patch_size // self.sf

        # ------------------------------------
        # get paths of L/H
        # ------------------------------------
        self.paths_H = util.get_image_paths(opt['dataroot_H'])
        self.paths_L = util.get_image_paths(opt['dataroot_L'])

        assert self.paths_H, 'Error: H path is empty.'
        if self.paths_L and self.paths_H:
            assert len(self.paths_L) == len(self.paths_H), 'L/H mismatch - {}, {}.'.format(len(self.paths_L), len(self.paths_H))

        self.jpeg_simulator = DiffJPEG()
        self.usm_sharpener = USMSharp()

    blur_kernel_list1 = ['iso', 'aniso', 'generalized_iso',
                         'generalized_aniso', 'plateau_iso', 'plateau_aniso']
    blur_kernel_list2 = ['iso', 'aniso', 'generalized_iso',
                         'generalized_aniso', 'plateau_iso', 'plateau_aniso']
    blur_kernel_prob1 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
    blur_kernel_prob2 = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
    kernel_size = 21
    blur_sigma1 = [0.05, 0.2]
    blur_sigma2 = [0.05, 0.1]
    betag_range1 = [0.7, 1.3]
    betag_range2 = [0.7, 1.3]
    betap_range1 = [0.7, 1.3]
    betap_range2 = [0.7, 1.3]

    def _decide_kernels(self) -> NDArray:
        blur_kernel1 = random_mixed_kernels(
            self.blur_kernel_list1,
            self.blur_kernel_prob1,
            self.kernel_size,
            self.blur_sigma1,
            self.blur_sigma1, [-math.pi, math.pi],
            self.betag_range1,
            self.betap_range1,
            noise_range=None
        )
        blur_kernel2 = random_mixed_kernels(
            self.blur_kernel_list2,
            self.blur_kernel_prob2,
            self.kernel_size,
            self.blur_sigma2,
            self.blur_sigma2, [-math.pi, math.pi],
            self.betag_range2,
            self.betap_range2,
            noise_range=None
        )
        if self.kernel_size < 13:
            omega_c = np.random.uniform(np.pi / 3, np.pi)
        else:
            omega_c = np.random.uniform(np.pi / 5, np.pi)
        sinc_kernel = circular_lowpass_kernel(omega_c, self.kernel_size, pad_to=21)
        return (blur_kernel1, blur_kernel2, sinc_kernel)

    def __getitem__(self, index):

        L_path = None
        # ------------------------------------
        # get H image
        # ------------------------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)
        img_H = util.uint2single(img_H)

        # ------------------------------------
        # modcrop
        # ------------------------------------
        img_H = util.modcrop(img_H, self.sf)

        # ------------------------------------
        # get L image
        # ------------------------------------
        if self.paths_L:
            # --------------------------------
            # directly load L image
            # --------------------------------
            L_path = self.paths_L[index]
            img_L = util.imread_uint(L_path, self.n_channels)
            img_L = util.uint2single(img_L)

        else:
            # --------------------------------
            # sythesize L image via matlab's bicubic
            # --------------------------------
            H, W = img_H.shape[:2]
            img_L = util.imresize_np(img_H, 1 / self.sf, True)

        src_tensor = img2tensor(img_L.copy(), bgr2rgb=False,
                                float32=True).unsqueeze(0)

        blur_kernel1, blur_kernel2, sinc_kernel = self._decide_kernels()
        (img_L_2, sharp_img_L, degraded_img_L) = apply_real_esrgan_degradations(
            src_tensor,
            blur_kernel1=Tensor(blur_kernel1).unsqueeze(0),
            blur_kernel2=Tensor(blur_kernel2).unsqueeze(0),
            second_blur_prob=0.2,
            sinc_kernel=Tensor(sinc_kernel).unsqueeze(0),
            resize_prob1=[0.2, 0.7, 0.1],
            resize_prob2=[0.3, 0.4, 0.3],
            resize_range1=[0.9, 1.1],
            resize_range2=[0.9, 1.1],
            gray_noise_prob1=0.2,
            gray_noise_prob2=0.2,
            gaussian_noise_prob1=0.2,
            gaussian_noise_prob2=0.2,
            noise_range=[0.01, 0.2],
            poisson_scale_range=[0.05, 0.45],
            jpeg_compression_range1=[85, 100],
            jpeg_compression_range2=[85, 100],
            jpeg_simulator=self.jpeg_simulator,
            random_crop_gt_size=256,
            sr_upsample_scale=1,
            usm_sharpener=self.usm_sharpener
        )
        # Image.fromarray((degraded_img_L[0] * 255).permute(
        #     1, 2, 0).cpu().numpy().astype(np.uint8)).save(
        #     "/home/cll/Desktop/degraded_L.png")
        # Image.fromarray((img_L * 255).astype(np.uint8)).save(
        #     "/home/cll/Desktop/img_L.png")
        # Image.fromarray((img_L_2[0] * 255).permute(
        #     1, 2, 0).cpu().numpy().astype(np.uint8)).save(
        #     "/home/cll/Desktop/img_L_2.png")
        # exit()

        # ------------------------------------
        # if train, get L/H patch pair
        # ------------------------------------
        if self.opt['phase'] == 'train':

            H, W, C = img_L.shape

            # --------------------------------
            # randomly crop the L patch
            # --------------------------------
            rnd_h = random.randint(0, max(0, H - self.L_size))
            rnd_w = random.randint(0, max(0, W - self.L_size))
            img_L = img_L[rnd_h:rnd_h + self.L_size, rnd_w:rnd_w + self.L_size, :]

            # --------------------------------
            # crop corresponding H patch
            # --------------------------------
            rnd_h_H, rnd_w_H = int(rnd_h * self.sf), int(rnd_w * self.sf)
            img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size, rnd_w_H:rnd_w_H + self.patch_size, :]

            # --------------------------------
            # augmentation - flip and/or rotate + RealESRGAN modified degradations
            # --------------------------------
            mode = random.randint(0, 7)
            img_L, img_H = util.augment_img(img_L, mode=mode), util.augment_img(img_H, mode=mode)


        # ------------------------------------
        # L/H pairs, HWC to CHW, numpy to tensor
        # ------------------------------------
        img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L)

        if L_path is None:
            L_path = H_path

        return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path}

    def __len__(self):
        return len(self.paths_H)