File size: 4,930 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import random
import numpy as np
import torch
import torch.utils.data as data
import utils.utils_image as util


class DatasetDPSR(data.Dataset):
    '''
    # -----------------------------------------
    # Get L/H/M for noisy image SR.
    # Only "paths_H" is needed, sythesize bicubicly downsampled L on-the-fly.
    # -----------------------------------------
    # e.g., SRResNet super-resolver prior for DPSR
    # -----------------------------------------
    '''

    def __init__(self, opt):
        super(DatasetDPSR, self).__init__()
        self.opt = opt
        self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
        self.sf = opt['scale'] if opt['scale'] else 4
        self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96
        self.L_size = self.patch_size // self.sf
        self.sigma = opt['sigma'] if opt['sigma'] else [0, 50]
        self.sigma_min, self.sigma_max = self.sigma[0], self.sigma[1]
        self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else 0

        # ------------------------------------
        # get paths of L/H
        # ------------------------------------
        self.paths_H = util.get_image_paths(opt['dataroot_H'])
        self.paths_L = util.get_image_paths(opt['dataroot_L'])

        assert self.paths_H, 'Error: H path is empty.'

    def __getitem__(self, index):

        # ------------------------------------
        # get H image
        # ------------------------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)
        img_H = util.uint2single(img_H)

        # ------------------------------------
        # modcrop for SR
        # ------------------------------------
        img_H = util.modcrop(img_H, self.sf)

        # ------------------------------------
        # sythesize L image via matlab's bicubic
        # ------------------------------------
        H, W, _ = img_H.shape
        img_L = util.imresize_np(img_H, 1 / self.sf, True)

        if self.opt['phase'] == 'train':
            """
            # --------------------------------
            # get L/H patch pairs
            # --------------------------------
            """
            H, W, C = img_L.shape

            # --------------------------------
            # randomly crop L patch
            # --------------------------------
            rnd_h = random.randint(0, max(0, H - self.L_size))
            rnd_w = random.randint(0, max(0, W - self.L_size))
            img_L = img_L[rnd_h:rnd_h + self.L_size, rnd_w:rnd_w + self.L_size, :]

            # --------------------------------
            # crop corresponding H patch
            # --------------------------------
            rnd_h_H, rnd_w_H = int(rnd_h * self.sf), int(rnd_w * self.sf)
            img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size, rnd_w_H:rnd_w_H + self.patch_size, :]

            # --------------------------------
            # augmentation - flip and/or rotate
            # --------------------------------
            mode = random.randint(0, 7)
            img_L, img_H = util.augment_img(img_L, mode=mode), util.augment_img(img_H, mode=mode)

            # --------------------------------
            # get patch pairs
            # --------------------------------
            img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L)

            # --------------------------------
            # select noise level and get Gaussian noise
            # --------------------------------
            if random.random() < 0.1:
                noise_level = torch.zeros(1).float()
            else:
                noise_level = torch.FloatTensor([np.random.uniform(self.sigma_min, self.sigma_max)])/255.0
                # noise_level = torch.rand(1)*50/255.0
                # noise_level = torch.min(torch.from_numpy(np.float32([7*np.random.chisquare(2.5)/255.0])),torch.Tensor([50./255.]))
    
        else:

            img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L)

            noise_level = torch.FloatTensor([self.sigma_test])

        # ------------------------------------
        # add noise
        # ------------------------------------
        noise = torch.randn(img_L.size()).mul_(noise_level).float()
        img_L.add_(noise)

        # ------------------------------------
        # get noise level map M
        # ------------------------------------
        M_vector = noise_level.unsqueeze(1).unsqueeze(1)
        M = M_vector.repeat(1, img_L.size()[-2], img_L.size()[-1])


        """
        # -------------------------------------
        # concat L and noise level map M
        # -------------------------------------
        """
        img_L = torch.cat((img_L, M), 0)


        L_path = H_path

        return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path}

    def __len__(self):
        return len(self.paths_H)