Spaces:
Running
Running
File size: 18,290 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
## Training and testing codes for USRNet, DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, BSRGAN, SwinIR, VRT
[](https://github.com/cszn/KAIR/releases) 
[Kai Zhang](https://cszn.github.io/)
*[Computer Vision Lab](https://vision.ee.ethz.ch/the-institute.html), ETH Zurich, Switzerland*
_______
- **_News (2022-02-15)_**: We release [the training codes](https://github.com/cszn/KAIR/blob/master/docs/README_VRT.md) of [VRT ](https://github.com/JingyunLiang/VRT) for video SR, deblurring and denoising.
<p align="center">
<a href="https://github.com/JingyunLiang/VRT">
<img width=30% src="https://raw.githubusercontent.com/JingyunLiang/VRT/main/assets/teaser_vsr.gif"/>
<img width=30% src="https://raw.githubusercontent.com/JingyunLiang/VRT/main/assets/teaser_vdb.gif"/>
<img width=30% src="https://raw.githubusercontent.com/JingyunLiang/VRT/main/assets/teaser_vdn.gif"/>
</a>
</p>
- **_News (2021-12-23)_**: Our techniques are adopted in [https://www.amemori.ai/](https://www.amemori.ai/).
- **_News (2021-12-23)_**: Our new work for practical image denoising.
- <img src="figs/palace.png" height="320px"/> <img src="figs/palace_HSCU.png" height="320px"/>
- [<img src="https://github.com/cszn/KAIR/raw/master/figs/denoising_02.png" height="256px"/>](https://imgsli.com/ODczMTc)
[<img src="https://github.com/cszn/KAIR/raw/master/figs/denoising_01.png" height="256px"/>](https://imgsli.com/ODczMTY)
- **_News (2021-09-09)_**: Add [main_download_pretrained_models.py](https://github.com/cszn/KAIR/blob/master/main_download_pretrained_models.py) to download pre-trained models.
- **_News (2021-09-08)_**: Add [matlab code](https://github.com/cszn/KAIR/tree/master/matlab) to zoom local part of an image for the purpose of comparison between different results.
- **_News (2021-09-07)_**: We upload [the training code](https://github.com/cszn/KAIR/blob/master/docs/README_SwinIR.md) of [SwinIR ](https://github.com/JingyunLiang/SwinIR) and provide an [interactive online Colob demo for real-world image SR](https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb). Try to super-resolve your own images on Colab! <a href="https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|Real-World Image (x4)|[BSRGAN, ICCV2021](https://github.com/cszn/BSRGAN)|[Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN)|SwinIR (ours)|
| :--- | :---: | :-----: | :-----: |
|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_LR.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_BSRGAN.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_realESRGAN.jpg">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_SwinIR.png">
|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_LR.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_BSRGAN.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_realESRGAN.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_SwinIR.png">|
- **_News (2021-08-31)_**: We upload the [training code of BSRGAN](https://github.com/cszn/BSRGAN#training).
- **_News (2021-08-24)_**: We upload the BSRGAN degradation model.
- **_News (2021-08-22)_**: Support multi-feature-layer VGG perceptual loss and UNet discriminator.
- **_News (2021-08-18)_**: We upload the extended BSRGAN degradation model. It is slightly different from our published version.
- **_News (2021-06-03)_**: Add testing codes of [GPEN (CVPR21)](https://github.com/yangxy/GPEN) for face image enhancement: [main_test_face_enhancement.py](https://github.com/cszn/KAIR/blob/master/main_test_face_enhancement.py)
<img src="figs/face_04_comparison.png" width="730px"/>
<img src="figs/face_13_comparison.png" width="730px"/>
<img src="figs/face_08_comparison.png" width="730px"/>
<img src="figs/face_01_comparison.png" width="730px"/>
<img src="figs/face_12_comparison.png" width="730px"/>
<img src="figs/face_10_comparison.png" width="730px"/>
- **_News (2021-05-13)_**: Add [PatchGAN discriminator](https://github.com/cszn/KAIR/blob/master/models/network_discriminator.py).
- **_News (2021-05-12)_**: Support distributed training, see also [https://github.com/xinntao/BasicSR/blob/master/docs/TrainTest.md](https://github.com/xinntao/BasicSR/blob/master/docs/TrainTest.md).
- **_News (2021-01)_**: [BSRGAN](https://github.com/cszn/BSRGAN) for blind real image super-resolution will be added.
- **_Pull requests are welcome!_**
- **Correction (2020-10)**: If you use multiple GPUs for GAN training, remove or comment [Line 105](https://github.com/cszn/KAIR/blob/e52a6944c6a40ba81b88430ffe38fd6517e0449e/models/model_gan.py#L105) to enable `DataParallel` for fast training
- **News (2020-10)**: Add [utils_receptivefield.py](https://github.com/cszn/KAIR/blob/master/utils/utils_receptivefield.py) to calculate receptive field.
- **News (2020-8)**: A `deep plug-and-play image restoration toolbox` is released at [cszn/DPIR](https://github.com/cszn/DPIR).
- **Tips (2020-8)**: Use [this](https://github.com/cszn/KAIR/blob/9fd17abff001ab82a22070f7e442bb5246d2d844/main_challenge_sr.py#L147) to avoid `out of memory` issue.
- **News (2020-7)**: Add [main_challenge_sr.py](https://github.com/cszn/KAIR/blob/23b0d0f717980e48fad02513ba14045d57264fe1/main_challenge_sr.py#L90) to get `FLOPs`, `#Params`, `Runtime`, `#Activations`, `#Conv`, and `Max Memory Allocated`.
```python
from utils.utils_modelsummary import get_model_activation, get_model_flops
input_dim = (3, 256, 256) # set the input dimension
activations, num_conv2d = get_model_activation(model, input_dim)
logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations', activations/10**6))
logger.info('{:>16s} : {:<d}'.format('#Conv2d', num_conv2d))
flops = get_model_flops(model, input_dim, False)
logger.info('{:>16s} : {:<.4f} [G]'.format('FLOPs', flops/10**9))
num_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6))
```
- **News (2020-6)**: Add [USRNet (CVPR 2020)](https://github.com/cszn/USRNet) for training and testing.
- [Network Architecture](https://github.com/cszn/KAIR/blob/3357aa0e54b81b1e26ceb1cee990f39add235e17/models/network_usrnet.py#L309)
- [Dataset](https://github.com/cszn/KAIR/blob/6c852636d3715bb281637863822a42c72739122a/data/dataset_usrnet.py#L16)
Clone repo
----------
```
git clone https://github.com/cszn/KAIR.git
```
```
pip install -r requirement.txt
```
Training
----------
You should modify the json file from [options](https://github.com/cszn/KAIR/tree/master/options) first, for example,
setting ["gpu_ids": [0,1,2,3]](https://github.com/cszn/KAIR/blob/ff80d265f64de67dfb3ffa9beff8949773c81a3d/options/train_msrresnet_psnr.json#L4) if 4 GPUs are used,
setting ["dataroot_H": "trainsets/trainH"](https://github.com/cszn/KAIR/blob/ff80d265f64de67dfb3ffa9beff8949773c81a3d/options/train_msrresnet_psnr.json#L24) if path of the high quality dataset is `trainsets/trainH`.
- Training with `DataParallel` - PSNR
```python
python main_train_psnr.py --opt options/train_msrresnet_psnr.json
```
- Training with `DataParallel` - GAN
```python
python main_train_gan.py --opt options/train_msrresnet_gan.json
```
- Training with `DistributedDataParallel` - PSNR - 4 GPUs
```python
python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_msrresnet_psnr.json --dist True
```
- Training with `DistributedDataParallel` - PSNR - 8 GPUs
```python
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/train_msrresnet_psnr.json --dist True
```
- Training with `DistributedDataParallel` - GAN - 4 GPUs
```python
python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_msrresnet_gan.json --dist True
```
- Training with `DistributedDataParallel` - GAN - 8 GPUs
```python
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_gan.py --opt options/train_msrresnet_gan.json --dist True
```
- Kill distributed training processes of `main_train_gan.py`
```python
kill $(ps aux | grep main_train_gan.py | grep -v grep | awk '{print $2}')
```
----------
| Method | Original Link |
|---|---|
| DnCNN |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)|
| FDnCNN |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)|
| FFDNet | [https://github.com/cszn/FFDNet](https://github.com/cszn/FFDNet)|
| SRMD | [https://github.com/cszn/SRMD](https://github.com/cszn/SRMD)|
| DPSR-SRResNet | [https://github.com/cszn/DPSR](https://github.com/cszn/DPSR)|
| SRResNet | [https://github.com/xinntao/BasicSR](https://github.com/xinntao/BasicSR)|
| ESRGAN | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)|
| RRDB | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)|
| IMDB | [https://github.com/Zheng222/IMDN](https://github.com/Zheng222/IMDN)|
| USRNet | [https://github.com/cszn/USRNet](https://github.com/cszn/USRNet)|
| DRUNet | [https://github.com/cszn/DPIR](https://github.com/cszn/DPIR)|
| DPIR | [https://github.com/cszn/DPIR](https://github.com/cszn/DPIR)|
| BSRGAN | [https://github.com/cszn/BSRGAN](https://github.com/cszn/BSRGAN)|
| SwinIR | [https://github.com/JingyunLiang/SwinIR](https://github.com/JingyunLiang/SwinIR)|
| VRT | [https://github.com/JingyunLiang/VRT](https://github.com/JingyunLiang/VRT) |
Network architectures
----------
* [USRNet](https://github.com/cszn/USRNet)
<img src="https://github.com/cszn/USRNet/blob/master/figs/architecture.png" width="600px"/>
* DnCNN
<img src="https://github.com/cszn/DnCNN/blob/master/figs/dncnn.png" width="600px"/>
* IRCNN denoiser
<img src="https://github.com/lipengFu/IRCNN/raw/master/Image/image_2.png" width="680px"/>
* FFDNet
<img src="https://github.com/cszn/FFDNet/blob/master/figs/ffdnet.png" width="600px"/>
* SRMD
<img src="https://github.com/cszn/SRMD/blob/master/figs/architecture.png" width="605px"/>
* SRResNet, SRGAN, RRDB, ESRGAN
<img src="https://github.com/xinntao/ESRGAN/blob/master/figures/architecture.jpg" width="595px"/>
* IMDN
<img src="figs/imdn.png" width="460px"/> ----- <img src="figs/imdn_block.png" width="100px"/>
Testing
----------
|Method | [model_zoo](model_zoo)|
|---|---|
| [main_test_dncnn.py](main_test_dncnn.py) |```dncnn_15.pth, dncnn_25.pth, dncnn_50.pth, dncnn_gray_blind.pth, dncnn_color_blind.pth, dncnn3.pth```|
| [main_test_ircnn_denoiser.py](main_test_ircnn_denoiser.py) | ```ircnn_gray.pth, ircnn_color.pth```|
| [main_test_fdncnn.py](main_test_fdncnn.py) | ```fdncnn_gray.pth, fdncnn_color.pth, fdncnn_gray_clip.pth, fdncnn_color_clip.pth```|
| [main_test_ffdnet.py](main_test_ffdnet.py) | ```ffdnet_gray.pth, ffdnet_color.pth, ffdnet_gray_clip.pth, ffdnet_color_clip.pth```|
| [main_test_srmd.py](main_test_srmd.py) | ```srmdnf_x2.pth, srmdnf_x3.pth, srmdnf_x4.pth, srmd_x2.pth, srmd_x3.pth, srmd_x4.pth```|
| | **The above models are converted from MatConvNet.** |
| [main_test_dpsr.py](main_test_dpsr.py) | ```dpsr_x2.pth, dpsr_x3.pth, dpsr_x4.pth, dpsr_x4_gan.pth```|
| [main_test_msrresnet.py](main_test_msrresnet.py) | ```msrresnet_x4_psnr.pth, msrresnet_x4_gan.pth```|
| [main_test_rrdb.py](main_test_rrdb.py) | ```rrdb_x4_psnr.pth, rrdb_x4_esrgan.pth```|
| [main_test_imdn.py](main_test_imdn.py) | ```imdn_x4.pth```|
[model_zoo](model_zoo)
--------
- download link [https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D)
[trainsets](trainsets)
----------
- [https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md](https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md)
- [train400](https://github.com/cszn/DnCNN/tree/master/TrainingCodes/DnCNN_TrainingCodes_v1.0/data)
- [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/)
- [Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar)
- optional: use [split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=512, p_overlap=96, p_max=800)](https://github.com/cszn/KAIR/blob/3ee0bf3e07b90ec0b7302d97ee2adb780617e637/utils/utils_image.py#L123) to get ```trainsets/trainH``` with small images for fast data loading
[testsets](testsets)
-----------
- [https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md](https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md)
- [set12](https://github.com/cszn/FFDNet/tree/master/testsets)
- [bsd68](https://github.com/cszn/FFDNet/tree/master/testsets)
- [cbsd68](https://github.com/cszn/FFDNet/tree/master/testsets)
- [kodak24](https://github.com/cszn/FFDNet/tree/master/testsets)
- [srbsd68](https://github.com/cszn/DPSR/tree/master/testsets/BSD68/GT)
- set5
- set14
- cbsd100
- urban100
- manga109
References
----------
```BibTex
@article{liang2022vrt,
title={VRT: A Video Restoration Transformer},
author={Liang, Jingyun and Cao, Jiezhang and Fan, Yuchen and Zhang, Kai and Ranjan, Rakesh and Li, Yawei and Timofte, Radu and Van Gool, Luc},
journal={arXiv preprint arXiv:2022.00000},
year={2022}
}
@inproceedings{liang2021swinir,
title={SwinIR: Image Restoration Using Swin Transformer},
author={Liang, Jingyun and Cao, Jiezhang and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision Workshops},
pages={1833--1844},
year={2021}
}
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
@article{zhang2021plug, % DPIR & DRUNet & IRCNN
title={Plug-and-Play Image Restoration with Deep Denoiser Prior},
author={Zhang, Kai and Li, Yawei and Zuo, Wangmeng and Zhang, Lei and Van Gool, Luc and Timofte, Radu},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2021}
}
@inproceedings{zhang2020aim, % efficientSR_challenge
title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results},
author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others},
booktitle={European Conference on Computer Vision Workshops},
year={2020}
}
@inproceedings{zhang2020deep, % USRNet
title={Deep unfolding network for image super-resolution},
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3217--3226},
year={2020}
}
@article{zhang2017beyond, % DnCNN
title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
journal={IEEE Transactions on Image Processing},
volume={26},
number={7},
pages={3142--3155},
year={2017}
}
@inproceedings{zhang2017learning, % IRCNN
title={Learning deep CNN denoiser prior for image restoration},
author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei},
booktitle={IEEE conference on computer vision and pattern recognition},
pages={3929--3938},
year={2017}
}
@article{zhang2018ffdnet, % FFDNet, FDnCNN
title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
journal={IEEE Transactions on Image Processing},
volume={27},
number={9},
pages={4608--4622},
year={2018}
}
@inproceedings{zhang2018learning, % SRMD
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
@inproceedings{zhang2019deep, % DPSR
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
@InProceedings{wang2018esrgan, % ESRGAN, MSRResNet
author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
month = {September},
year = {2018}
}
@inproceedings{hui2019lightweight, % IMDN
title={Lightweight Image Super-Resolution with Information Multi-distillation Network},
author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)},
pages={2024--2032},
year={2019}
}
@inproceedings{zhang2019aim, % IMDN
title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results},
author={Kai Zhang and Shuhang Gu and Radu Timofte and others},
booktitle={IEEE International Conference on Computer Vision Workshops},
year={2019}
}
@inproceedings{yang2021gan,
title={GAN Prior Embedded Network for Blind Face Restoration in the Wild},
author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2021}
}
```
|