File size: 18,290 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
## Training and testing codes for USRNet, DnCNN, FFDNet, SRMD, DPSR, MSRResNet, ESRGAN, BSRGAN, SwinIR, VRT
[![download](https://img.shields.io/github/downloads/cszn/KAIR/total.svg)](https://github.com/cszn/KAIR/releases) ![visitors](https://visitor-badge.glitch.me/badge?page_id=cszn/KAIR) 

[Kai Zhang](https://cszn.github.io/)

*[Computer Vision Lab](https://vision.ee.ethz.ch/the-institute.html), ETH Zurich, Switzerland*

_______
- **_News (2022-02-15)_**: We release [the training codes](https://github.com/cszn/KAIR/blob/master/docs/README_VRT.md) of [VRT ![GitHub Stars](https://img.shields.io/github/stars/JingyunLiang/VRT?style=social)](https://github.com/JingyunLiang/VRT) for video SR, deblurring and denoising.
<p align="center">
  <a href="https://github.com/JingyunLiang/VRT">
    <img width=30% src="https://raw.githubusercontent.com/JingyunLiang/VRT/main/assets/teaser_vsr.gif"/>
    <img width=30% src="https://raw.githubusercontent.com/JingyunLiang/VRT/main/assets/teaser_vdb.gif"/>
    <img width=30% src="https://raw.githubusercontent.com/JingyunLiang/VRT/main/assets/teaser_vdn.gif"/>
  </a>
</p>

- **_News (2021-12-23)_**: Our techniques are adopted in [https://www.amemori.ai/](https://www.amemori.ai/).
- **_News (2021-12-23)_**: Our new work for practical image denoising.

- <img src="figs/palace.png" height="320px"/> <img src="figs/palace_HSCU.png" height="320px"/> 
- [<img src="https://github.com/cszn/KAIR/raw/master/figs/denoising_02.png" height="256px"/>](https://imgsli.com/ODczMTc) 
[<img src="https://github.com/cszn/KAIR/raw/master/figs/denoising_01.png" height="256px"/>](https://imgsli.com/ODczMTY) 
- **_News (2021-09-09)_**: Add [main_download_pretrained_models.py](https://github.com/cszn/KAIR/blob/master/main_download_pretrained_models.py) to download pre-trained models.
- **_News (2021-09-08)_**: Add [matlab code](https://github.com/cszn/KAIR/tree/master/matlab) to zoom local part of an image for the purpose of comparison between different results.
- **_News (2021-09-07)_**: We upload [the training code](https://github.com/cszn/KAIR/blob/master/docs/README_SwinIR.md) of [SwinIR ![GitHub Stars](https://img.shields.io/github/stars/JingyunLiang/SwinIR?style=social)](https://github.com/JingyunLiang/SwinIR) and provide an [interactive online Colob demo for real-world image SR](https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb). Try to super-resolve your own images on Colab! <a href="https://colab.research.google.com/gist/JingyunLiang/a5e3e54bc9ef8d7bf594f6fee8208533/swinir-demo-on-real-world-image-sr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>

|Real-World Image (x4)|[BSRGAN, ICCV2021](https://github.com/cszn/BSRGAN)|[Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN)|SwinIR (ours)|
|      :---      |     :---:        |        :-----:         |        :-----:         | 
|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_LR.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_BSRGAN.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_realESRGAN.jpg">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/ETH_SwinIR.png">
|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_LR.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_BSRGAN.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_realESRGAN.png">|<img width="200" src="https://raw.githubusercontent.com/JingyunLiang/SwinIR/main/figs/OST_009_crop_SwinIR.png">|

- **_News (2021-08-31)_**: We upload the [training code of BSRGAN](https://github.com/cszn/BSRGAN#training).
- **_News (2021-08-24)_**: We upload the BSRGAN degradation model.
- **_News (2021-08-22)_**: Support multi-feature-layer VGG perceptual loss and UNet discriminator. 
- **_News (2021-08-18)_**: We upload the extended BSRGAN degradation model. It is slightly different from our published version. 

- **_News (2021-06-03)_**: Add testing codes of [GPEN (CVPR21)](https://github.com/yangxy/GPEN) for face image enhancement: [main_test_face_enhancement.py](https://github.com/cszn/KAIR/blob/master/main_test_face_enhancement.py)

<img src="figs/face_04_comparison.png" width="730px"/> 
<img src="figs/face_13_comparison.png" width="730px"/> 
<img src="figs/face_08_comparison.png" width="730px"/> 
<img src="figs/face_01_comparison.png" width="730px"/> 
<img src="figs/face_12_comparison.png" width="730px"/> 
<img src="figs/face_10_comparison.png" width="730px"/> 


- **_News (2021-05-13)_**: Add [PatchGAN discriminator](https://github.com/cszn/KAIR/blob/master/models/network_discriminator.py).

- **_News (2021-05-12)_**: Support distributed training, see also [https://github.com/xinntao/BasicSR/blob/master/docs/TrainTest.md](https://github.com/xinntao/BasicSR/blob/master/docs/TrainTest.md).

- **_News (2021-01)_**: [BSRGAN](https://github.com/cszn/BSRGAN) for blind real image super-resolution will be added.

- **_Pull requests are welcome!_**

- **Correction (2020-10)**: If you use multiple GPUs for GAN training, remove or comment [Line 105](https://github.com/cszn/KAIR/blob/e52a6944c6a40ba81b88430ffe38fd6517e0449e/models/model_gan.py#L105) to enable `DataParallel` for fast training

- **News (2020-10)**: Add [utils_receptivefield.py](https://github.com/cszn/KAIR/blob/master/utils/utils_receptivefield.py) to calculate receptive field.

- **News (2020-8)**: A `deep plug-and-play image restoration toolbox` is released at [cszn/DPIR](https://github.com/cszn/DPIR).

- **Tips (2020-8)**: Use [this](https://github.com/cszn/KAIR/blob/9fd17abff001ab82a22070f7e442bb5246d2d844/main_challenge_sr.py#L147) to avoid `out of memory` issue.

- **News (2020-7)**: Add [main_challenge_sr.py](https://github.com/cszn/KAIR/blob/23b0d0f717980e48fad02513ba14045d57264fe1/main_challenge_sr.py#L90) to get `FLOPs`, `#Params`, `Runtime`, `#Activations`, `#Conv`, and `Max Memory Allocated`.
```python
from utils.utils_modelsummary import get_model_activation, get_model_flops
input_dim = (3, 256, 256)  # set the input dimension
activations, num_conv2d = get_model_activation(model, input_dim)
logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations', activations/10**6))
logger.info('{:>16s} : {:<d}'.format('#Conv2d', num_conv2d))
flops = get_model_flops(model, input_dim, False)
logger.info('{:>16s} : {:<.4f} [G]'.format('FLOPs', flops/10**9))
num_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6))
```

- **News (2020-6)**: Add [USRNet (CVPR 2020)](https://github.com/cszn/USRNet) for training and testing.
  - [Network Architecture](https://github.com/cszn/KAIR/blob/3357aa0e54b81b1e26ceb1cee990f39add235e17/models/network_usrnet.py#L309)
  - [Dataset](https://github.com/cszn/KAIR/blob/6c852636d3715bb281637863822a42c72739122a/data/dataset_usrnet.py#L16)


Clone repo
----------
```
git clone https://github.com/cszn/KAIR.git
```
```
pip install -r requirement.txt
```



Training
----------

You should modify the json file from [options](https://github.com/cszn/KAIR/tree/master/options) first, for example,
setting ["gpu_ids": [0,1,2,3]](https://github.com/cszn/KAIR/blob/ff80d265f64de67dfb3ffa9beff8949773c81a3d/options/train_msrresnet_psnr.json#L4) if 4 GPUs are used,
setting ["dataroot_H": "trainsets/trainH"](https://github.com/cszn/KAIR/blob/ff80d265f64de67dfb3ffa9beff8949773c81a3d/options/train_msrresnet_psnr.json#L24) if path of the high quality dataset is `trainsets/trainH`.

- Training with `DataParallel` - PSNR


```python
python main_train_psnr.py --opt options/train_msrresnet_psnr.json
```

- Training with `DataParallel` - GAN

```python
python main_train_gan.py --opt options/train_msrresnet_gan.json
```

- Training with `DistributedDataParallel` - PSNR - 4 GPUs

```python
python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_msrresnet_psnr.json  --dist True
```

- Training with `DistributedDataParallel` - PSNR - 8 GPUs

```python
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/train_msrresnet_psnr.json  --dist True
```

- Training with `DistributedDataParallel` - GAN - 4 GPUs

```python
python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_msrresnet_gan.json  --dist True
```

- Training with `DistributedDataParallel` - GAN - 8 GPUs

```python
python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_gan.py --opt options/train_msrresnet_gan.json  --dist True
```

- Kill distributed training processes of `main_train_gan.py`

```python
kill $(ps aux | grep main_train_gan.py | grep -v grep | awk '{print $2}')
```

----------
| Method | Original Link |
|---|---|
| DnCNN |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)|
| FDnCNN |[https://github.com/cszn/DnCNN](https://github.com/cszn/DnCNN)|
| FFDNet | [https://github.com/cszn/FFDNet](https://github.com/cszn/FFDNet)|
| SRMD | [https://github.com/cszn/SRMD](https://github.com/cszn/SRMD)|
| DPSR-SRResNet | [https://github.com/cszn/DPSR](https://github.com/cszn/DPSR)|
| SRResNet | [https://github.com/xinntao/BasicSR](https://github.com/xinntao/BasicSR)|
| ESRGAN | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)|
| RRDB | [https://github.com/xinntao/ESRGAN](https://github.com/xinntao/ESRGAN)|
| IMDB | [https://github.com/Zheng222/IMDN](https://github.com/Zheng222/IMDN)|
| USRNet | [https://github.com/cszn/USRNet](https://github.com/cszn/USRNet)|
| DRUNet | [https://github.com/cszn/DPIR](https://github.com/cszn/DPIR)|
| DPIR | [https://github.com/cszn/DPIR](https://github.com/cszn/DPIR)|
| BSRGAN | [https://github.com/cszn/BSRGAN](https://github.com/cszn/BSRGAN)|
| SwinIR | [https://github.com/JingyunLiang/SwinIR](https://github.com/JingyunLiang/SwinIR)|
| VRT | [https://github.com/JingyunLiang/VRT](https://github.com/JingyunLiang/VRT)       |

Network architectures
----------
* [USRNet](https://github.com/cszn/USRNet)

  <img src="https://github.com/cszn/USRNet/blob/master/figs/architecture.png" width="600px"/> 

* DnCNN

  <img src="https://github.com/cszn/DnCNN/blob/master/figs/dncnn.png" width="600px"/> 
 
* IRCNN denoiser

 <img src="https://github.com/lipengFu/IRCNN/raw/master/Image/image_2.png" width="680px"/> 

* FFDNet

  <img src="https://github.com/cszn/FFDNet/blob/master/figs/ffdnet.png" width="600px"/> 

* SRMD

  <img src="https://github.com/cszn/SRMD/blob/master/figs/architecture.png" width="605px"/> 

* SRResNet, SRGAN, RRDB, ESRGAN

  <img src="https://github.com/xinntao/ESRGAN/blob/master/figures/architecture.jpg" width="595px"/> 
  
* IMDN

  <img src="figs/imdn.png" width="460px"/>  ----- <img src="figs/imdn_block.png" width="100px"/> 



Testing
----------
|Method | [model_zoo](model_zoo)|
|---|---|
| [main_test_dncnn.py](main_test_dncnn.py) |```dncnn_15.pth, dncnn_25.pth, dncnn_50.pth, dncnn_gray_blind.pth, dncnn_color_blind.pth, dncnn3.pth```|
| [main_test_ircnn_denoiser.py](main_test_ircnn_denoiser.py) | ```ircnn_gray.pth, ircnn_color.pth```| 
| [main_test_fdncnn.py](main_test_fdncnn.py) | ```fdncnn_gray.pth, fdncnn_color.pth, fdncnn_gray_clip.pth, fdncnn_color_clip.pth```|
| [main_test_ffdnet.py](main_test_ffdnet.py) | ```ffdnet_gray.pth, ffdnet_color.pth, ffdnet_gray_clip.pth, ffdnet_color_clip.pth```|
| [main_test_srmd.py](main_test_srmd.py) | ```srmdnf_x2.pth, srmdnf_x3.pth, srmdnf_x4.pth, srmd_x2.pth, srmd_x3.pth, srmd_x4.pth```| 
|  | **The above models are converted from MatConvNet.** |
| [main_test_dpsr.py](main_test_dpsr.py) | ```dpsr_x2.pth, dpsr_x3.pth, dpsr_x4.pth, dpsr_x4_gan.pth```|
| [main_test_msrresnet.py](main_test_msrresnet.py) | ```msrresnet_x4_psnr.pth, msrresnet_x4_gan.pth```|
| [main_test_rrdb.py](main_test_rrdb.py) | ```rrdb_x4_psnr.pth, rrdb_x4_esrgan.pth```|
| [main_test_imdn.py](main_test_imdn.py) | ```imdn_x4.pth```|

[model_zoo](model_zoo)
--------
- download link [https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D](https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D)

[trainsets](trainsets)
----------
- [https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md](https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md)
- [train400](https://github.com/cszn/DnCNN/tree/master/TrainingCodes/DnCNN_TrainingCodes_v1.0/data)
- [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/)
- [Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar)
- optional: use [split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=512, p_overlap=96, p_max=800)](https://github.com/cszn/KAIR/blob/3ee0bf3e07b90ec0b7302d97ee2adb780617e637/utils/utils_image.py#L123) to get ```trainsets/trainH``` with small images for fast data loading

[testsets](testsets)
-----------
- [https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md](https://github.com/xinntao/BasicSR/blob/master/docs/DatasetPreparation.md)
- [set12](https://github.com/cszn/FFDNet/tree/master/testsets)
- [bsd68](https://github.com/cszn/FFDNet/tree/master/testsets)
- [cbsd68](https://github.com/cszn/FFDNet/tree/master/testsets)
- [kodak24](https://github.com/cszn/FFDNet/tree/master/testsets)
- [srbsd68](https://github.com/cszn/DPSR/tree/master/testsets/BSD68/GT)
- set5
- set14
- cbsd100
- urban100
- manga109


References
----------
```BibTex
@article{liang2022vrt,
title={VRT: A Video Restoration Transformer},
author={Liang, Jingyun and Cao, Jiezhang and Fan, Yuchen and Zhang, Kai and Ranjan, Rakesh and Li, Yawei and Timofte, Radu and Van Gool, Luc},
journal={arXiv preprint arXiv:2022.00000},
year={2022}
}
@inproceedings{liang2021swinir,
title={SwinIR: Image Restoration Using Swin Transformer},
author={Liang, Jingyun and Cao, Jiezhang and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision Workshops},
pages={1833--1844},
year={2021}
}
@inproceedings{zhang2021designing,
title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
booktitle={IEEE International Conference on Computer Vision},
pages={4791--4800},
year={2021}
}
@article{zhang2021plug, % DPIR & DRUNet & IRCNN
  title={Plug-and-Play Image Restoration with Deep Denoiser Prior},
  author={Zhang, Kai and Li, Yawei and Zuo, Wangmeng and Zhang, Lei and Van Gool, Luc and Timofte, Radu},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021}
}
@inproceedings{zhang2020aim, % efficientSR_challenge
  title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results},
  author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others},
  booktitle={European Conference on Computer Vision Workshops},
  year={2020}
}
@inproceedings{zhang2020deep, % USRNet
  title={Deep unfolding network for image super-resolution},
  author={Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3217--3226},
  year={2020}
}
@article{zhang2017beyond, % DnCNN
  title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={7},
  pages={3142--3155},
  year={2017}
}
@inproceedings{zhang2017learning, % IRCNN
title={Learning deep CNN denoiser prior for image restoration},
author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei},
booktitle={IEEE conference on computer vision and pattern recognition},
pages={3929--3938},
year={2017}
}
@article{zhang2018ffdnet, % FFDNet, FDnCNN
  title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={27},
  number={9},
  pages={4608--4622},
  year={2018}
}
@inproceedings{zhang2018learning, % SRMD
  title={Learning a single convolutional super-resolution network for multiple degradations},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3262--3271},
  year={2018}
}
@inproceedings{zhang2019deep, % DPSR
  title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1671--1681},
  year={2019}
}
@InProceedings{wang2018esrgan, % ESRGAN, MSRResNet
    author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
    title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
    booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
    month = {September},
    year = {2018}
}
@inproceedings{hui2019lightweight, % IMDN
  title={Lightweight Image Super-Resolution with Information Multi-distillation Network},
  author={Hui, Zheng and Gao, Xinbo and Yang, Yunchu and Wang, Xiumei},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia (ACM MM)},
  pages={2024--2032},
  year={2019}
}
@inproceedings{zhang2019aim, % IMDN
  title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results},
  author={Kai Zhang and Shuhang Gu and Radu Timofte and others},
  booktitle={IEEE International Conference on Computer Vision Workshops},
  year={2019}
}
@inproceedings{yang2021gan,
    title={GAN Prior Embedded Network for Blind Face Restoration in the Wild},
    author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
    year={2021}
}
```