Spaces:
Running
Running
File size: 6,843 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
https://github.com/yangxy/GPEN
@inproceedings{Yang2021GPEN,
title={GAN Prior Embedded Network for Blind Face Restoration in the Wild},
author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021}
}
© Alibaba, 2021. For academic and non-commercial use only.
==================================================
slightly modified by Kai Zhang (2021-06-03)
https://github.com/cszn/KAIR
How to run:
step 1: Download <RetinaFace-R50.pth> model and <GPEN-512.pth> model and put them into `model_zoo`.
RetinaFace-R50.pth: https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth
GPEN-512.pth: https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-512.pth
step 2: Install ninja by `pip install ninja`; set <inputdir> for your own testing images
step 3: `python main_test_face_enhancement.py`
==================================================
'''
import os
import cv2
import glob
import numpy as np
import torch
from utils.utils_alignfaces import warp_and_crop_face, get_reference_facial_points
from utils import utils_image as util
from retinaface.retinaface_detection import RetinaFaceDetection
from models.network_faceenhancer import FullGenerator as enhancer_net
class faceenhancer(object):
def __init__(self, model_path='model_zoo/GPEN-512.pth', size=512, channel_multiplier=2):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model_path = model_path
self.size = size
self.model = enhancer_net(self.size, 512, 8, channel_multiplier).to(self.device)
self.model.load_state_dict(torch.load(self.model_path))
self.model.eval()
def process(self, img):
'''
img: uint8 RGB image, (W, H, 3)
out: uint8 RGB image, (W, H, 3)
'''
img = cv2.resize(img, (self.size, self.size))
img = util.uint2tensor4(img)
img = (img - 0.5) / 0.5
img = img.to(self.device)
with torch.no_grad():
out, __ = self.model(img)
out = util.tensor2uint(out * 0.5 + 0.5)
return out
class faceenhancer_with_detection_alignment(object):
def __init__(self, model_path, size=512, channel_multiplier=2):
self.facedetector = RetinaFaceDetection('model_zoo/RetinaFace-R50.pth')
self.faceenhancer = faceenhancer(model_path, size, channel_multiplier)
self.size = size
self.threshold = 0.9
self.mask = np.zeros((512, 512), np.float32)
cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
self.kernel = np.array((
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]), dtype="float32")
# get the reference 5 landmarks position in the crop settings
default_square = True
inner_padding_factor = 0.25
outer_padding = (0, 0)
self.reference_5pts = get_reference_facial_points(
(self.size, self.size), inner_padding_factor, outer_padding, default_square)
def process(self, img):
'''
img: uint8 RGB image, (W, H, 3)
img, orig_faces, enhanced_faces: uint8 RGB image / cropped face images
'''
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
facebs, landms = self.facedetector.detect(img)
orig_faces, enhanced_faces = [], []
height, width = img.shape[:2]
full_mask = np.zeros((height, width), dtype=np.float32)
full_img = np.zeros(img.shape, dtype=np.uint8)
for i, (faceb, facial5points) in enumerate(zip(facebs, landms)):
if faceb[4]<self.threshold: continue
fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0])
facial5points = np.reshape(facial5points, (2, 5))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size))
# Enhance the face image!
ef = self.faceenhancer.process(of)
orig_faces.append(of)
enhanced_faces.append(ef)
tmp_mask = self.mask
tmp_mask = cv2.resize(tmp_mask, ef.shape[:2])
tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3)
if min(fh, fw) < 100: # Gaussian filter for small face
ef = cv2.filter2D(ef, -1, self.kernel)
tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3)
mask = tmp_mask - full_mask
full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)]
full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)]
full_mask = full_mask[:, :, np.newaxis]
img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask)
return img, orig_faces, enhanced_faces
if __name__=='__main__':
inputdir = os.path.join('testsets', 'real_faces')
outdir = os.path.join('testsets', 'real_faces_results')
os.makedirs(outdir, exist_ok=True)
# whether use the face detection&alignment or not
need_face_detection = True
if need_face_detection:
enhancer = faceenhancer_with_detection_alignment(model_path=os.path.join('model_zoo','GPEN-512.pth'), size=512, channel_multiplier=2)
else:
enhancer = faceenhancer(model_path=os.path.join('model_zoo','GPEN-512.pth'), size=512, channel_multiplier=2)
for idx, img_file in enumerate(util.get_image_paths(inputdir)):
img_name, ext = os.path.splitext(os.path.basename(img_file))
img_L = util.imread_uint(img_file, n_channels=3)
print('{:->4d} --> {:<s}'.format(idx+1, img_name+ext))
img_L = cv2.resize(img_L, (0,0), fx=2, fy=2)
if need_face_detection:
# do the enhancement
img_H, orig_faces, enhanced_faces = enhancer.process(img_L)
util.imsave(np.hstack((img_L, img_H)), os.path.join(outdir, img_name+'_comparison.png'))
util.imsave(img_H, os.path.join(outdir, img_name+'_enhanced.png'))
for m, (ef, of) in enumerate(zip(enhanced_faces, orig_faces)):
of = cv2.resize(of, ef.shape[:2])
util.imsave(np.hstack((of, ef)), os.path.join(outdir, img_name+'_face%02d'%m+'.png'))
else:
# do the enhancement
img_H = enhancer.process(img_L)
util.imsave(img_H, os.path.join(outdir, img_name+'_enhanced_without_detection.png'))
|