Spaces:
Running
Running
File size: 23,930 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
# -*- coding: utf-8 -*-
from utils import utils_image as util
import random
import scipy
import scipy.stats as ss
import scipy.io as io
from scipy import ndimage
from scipy.interpolate import interp2d
import numpy as np
import torch
"""
# --------------------------------------------
# Super-Resolution
# --------------------------------------------
#
# Kai Zhang ([email protected])
# https://github.com/cszn
# modified by Kai Zhang (github: https://github.com/cszn)
# 03/03/2020
# --------------------------------------------
"""
"""
# --------------------------------------------
# anisotropic Gaussian kernels
# --------------------------------------------
"""
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k
def gm_blur_kernel(mean, cov, size=15):
center = size / 2.0 + 0.5
k = np.zeros([size, size])
for y in range(size):
for x in range(size):
cy = y - center + 1
cx = x - center + 1
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
k = k / np.sum(k)
return k
"""
# --------------------------------------------
# calculate PCA projection matrix
# --------------------------------------------
"""
def get_pca_matrix(x, dim_pca=15):
"""
Args:
x: 225x10000 matrix
dim_pca: 15
Returns:
pca_matrix: 15x225
"""
C = np.dot(x, x.T)
w, v = scipy.linalg.eigh(C)
pca_matrix = v[:, -dim_pca:].T
return pca_matrix
def show_pca(x):
"""
x: PCA projection matrix, e.g., 15x225
"""
for i in range(x.shape[0]):
xc = np.reshape(x[i, :], (int(np.sqrt(x.shape[1])), -1), order="F")
util.surf(xc)
def cal_pca_matrix(path='PCA_matrix.mat', ksize=15, l_max=12.0, dim_pca=15, num_samples=500):
kernels = np.zeros([ksize*ksize, num_samples], dtype=np.float32)
for i in range(num_samples):
theta = np.pi*np.random.rand(1)
l1 = 0.1+l_max*np.random.rand(1)
l2 = 0.1+(l1-0.1)*np.random.rand(1)
k = anisotropic_Gaussian(ksize=ksize, theta=theta[0], l1=l1[0], l2=l2[0])
# util.imshow(k)
kernels[:, i] = np.reshape(k, (-1), order="F") # k.flatten(order='F')
# io.savemat('k.mat', {'k': kernels})
pca_matrix = get_pca_matrix(kernels, dim_pca=dim_pca)
io.savemat(path, {'p': pca_matrix})
return pca_matrix
"""
# --------------------------------------------
# shifted anisotropic Gaussian kernels
# --------------------------------------------
"""
def shifted_anisotropic_Gaussian(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
""""
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5*(scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X,Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z-MU
ZZ_t = ZZ.transpose(0,1,3,2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
#raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
#kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel
def gen_kernel(k_size=np.array([25, 25]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=12., noise_level=0):
""""
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
sf = random.choice([1, 2, 3, 4])
scale_factor = np.array([sf, sf])
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = 0#-noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5*(scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X,Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z-MU
ZZ_t = ZZ.transpose(0,1,3,2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
#raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
#kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel
"""
# --------------------------------------------
# degradation models
# --------------------------------------------
"""
def bicubic_degradation(x, sf=3):
'''
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
'''
x = util.imresize_np(x, scale=1/sf)
return x
def srmd_degradation(x, k, sf=3):
''' blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x
def dpsr_degradation(x, k, sf=3):
''' bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
'''
x = bicubic_degradation(x, sf=sf)
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x
def classical_degradation(x, k, sf=3):
''' blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
#x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...]
def modcrop_np(img, sf):
'''
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
'''
w, h = img.shape[:2]
im = np.copy(img)
return im[:w - w % sf, :h - h % sf, ...]
'''
# =================
# Numpy
# =================
'''
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH, image or kernel
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf-1)*0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w-1)
y1 = np.clip(y1, 0, h-1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x
'''
# =================
# pytorch
# =================
'''
def splits(a, sf):
'''
a: tensor NxCxWxHx2
sf: scale factor
out: tensor NxCx(W/sf)x(H/sf)x2x(sf^2)
'''
b = torch.stack(torch.chunk(a, sf, dim=2), dim=5)
b = torch.cat(torch.chunk(b, sf, dim=3), dim=5)
return b
def c2c(x):
return torch.from_numpy(np.stack([np.float32(x.real), np.float32(x.imag)], axis=-1))
def r2c(x):
return torch.stack([x, torch.zeros_like(x)], -1)
def cdiv(x, y):
a, b = x[..., 0], x[..., 1]
c, d = y[..., 0], y[..., 1]
cd2 = c**2 + d**2
return torch.stack([(a*c+b*d)/cd2, (b*c-a*d)/cd2], -1)
def csum(x, y):
return torch.stack([x[..., 0] + y, x[..., 1]], -1)
def cabs(x):
return torch.pow(x[..., 0]**2+x[..., 1]**2, 0.5)
def cmul(t1, t2):
'''
complex multiplication
t1: NxCxHxWx2
output: NxCxHxWx2
'''
real1, imag1 = t1[..., 0], t1[..., 1]
real2, imag2 = t2[..., 0], t2[..., 1]
return torch.stack([real1 * real2 - imag1 * imag2, real1 * imag2 + imag1 * real2], dim=-1)
def cconj(t, inplace=False):
'''
# complex's conjugation
t: NxCxHxWx2
output: NxCxHxWx2
'''
c = t.clone() if not inplace else t
c[..., 1] *= -1
return c
def rfft(t):
return torch.rfft(t, 2, onesided=False)
def irfft(t):
return torch.irfft(t, 2, onesided=False)
def fft(t):
return torch.fft(t, 2)
def ifft(t):
return torch.ifft(t, 2)
def p2o(psf, shape):
'''
Args:
psf: NxCxhxw
shape: [H,W]
Returns:
otf: NxCxHxWx2
'''
otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
for axis, axis_size in enumerate(psf.shape[2:]):
otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
otf = torch.rfft(otf, 2, onesided=False)
n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
otf[...,1][torch.abs(otf[...,1])<n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
return otf
'''
# =================
PyTorch
# =================
'''
def INVLS_pytorch(FB, FBC, F2B, FR, tau, sf=2):
'''
FB: NxCxWxHx2
F2B: NxCxWxHx2
x1 = FB.*FR;
FBR = BlockMM(nr,nc,Nb,m,x1);
invW = BlockMM(nr,nc,Nb,m,F2B);
invWBR = FBR./(invW + tau*Nb);
fun = @(block_struct) block_struct.data.*invWBR;
FCBinvWBR = blockproc(FBC,[nr,nc],fun);
FX = (FR-FCBinvWBR)/tau;
Xest = real(ifft2(FX));
'''
x1 = cmul(FB, FR)
FBR = torch.mean(splits(x1, sf), dim=-1, keepdim=False)
invW = torch.mean(splits(F2B, sf), dim=-1, keepdim=False)
invWBR = cdiv(FBR, csum(invW, tau))
FCBinvWBR = cmul(FBC, invWBR.repeat(1,1,sf,sf,1))
FX = (FR-FCBinvWBR)/tau
Xest = torch.irfft(FX, 2, onesided=False)
return Xest
def real2complex(x):
return torch.stack([x, torch.zeros_like(x)], -1)
def modcrop(img, sf):
'''
img: tensor image, NxCxWxH or CxWxH or WxH
sf: scale factor
'''
w, h = img.shape[-2:]
im = img.clone()
return im[..., :w - w % sf, :h - h % sf]
def upsample(x, sf=3, center=False):
'''
x: tensor image, NxCxWxH
'''
st = (sf-1)//2 if center else 0
z = torch.zeros((x.shape[0], x.shape[1], x.shape[2]*sf, x.shape[3]*sf)).type_as(x)
z[..., st::sf, st::sf].copy_(x)
return z
def downsample(x, sf=3, center=False):
st = (sf-1)//2 if center else 0
return x[..., st::sf, st::sf]
def circular_pad(x, pad):
'''
# x[N, 1, W, H] -> x[N, 1, W + 2 pad, H + 2 pad] (pariodic padding)
'''
x = torch.cat([x, x[:, :, 0:pad, :]], dim=2)
x = torch.cat([x, x[:, :, :, 0:pad]], dim=3)
x = torch.cat([x[:, :, -2 * pad:-pad, :], x], dim=2)
x = torch.cat([x[:, :, :, -2 * pad:-pad], x], dim=3)
return x
def pad_circular(input, padding):
# type: (Tensor, List[int]) -> Tensor
"""
Arguments
:param input: tensor of shape :math:`(N, C_{\text{in}}, H, [W, D]))`
:param padding: (tuple): m-elem tuple where m is the degree of convolution
Returns
:return: tensor of shape :math:`(N, C_{\text{in}}, [D + 2 * padding[0],
H + 2 * padding[1]], W + 2 * padding[2]))`
"""
offset = 3
for dimension in range(input.dim() - offset + 1):
input = dim_pad_circular(input, padding[dimension], dimension + offset)
return input
def dim_pad_circular(input, padding, dimension):
# type: (Tensor, int, int) -> Tensor
input = torch.cat([input, input[[slice(None)] * (dimension - 1) +
[slice(0, padding)]]], dim=dimension - 1)
input = torch.cat([input[[slice(None)] * (dimension - 1) +
[slice(-2 * padding, -padding)]], input], dim=dimension - 1)
return input
def imfilter(x, k):
'''
x: image, NxcxHxW
k: kernel, cx1xhxw
'''
x = pad_circular(x, padding=((k.shape[-2]-1)//2, (k.shape[-1]-1)//2))
x = torch.nn.functional.conv2d(x, k, groups=x.shape[1])
return x
def G(x, k, sf=3, center=False):
'''
x: image, NxcxHxW
k: kernel, cx1xhxw
sf: scale factor
center: the first one or the moddle one
Matlab function:
tmp = imfilter(x,h,'circular');
y = downsample2(tmp,K);
'''
x = downsample(imfilter(x, k), sf=sf, center=center)
return x
def Gt(x, k, sf=3, center=False):
'''
x: image, NxcxHxW
k: kernel, cx1xhxw
sf: scale factor
center: the first one or the moddle one
Matlab function:
tmp = upsample2(x,K);
y = imfilter(tmp,h,'circular');
'''
x = imfilter(upsample(x, sf=sf, center=center), k)
return x
def interpolation_down(x, sf, center=False):
mask = torch.zeros_like(x)
if center:
start = torch.tensor((sf-1)//2)
mask[..., start::sf, start::sf] = torch.tensor(1).type_as(x)
LR = x[..., start::sf, start::sf]
else:
mask[..., ::sf, ::sf] = torch.tensor(1).type_as(x)
LR = x[..., ::sf, ::sf]
y = x.mul(mask)
return LR, y, mask
'''
# =================
Numpy
# =================
'''
def blockproc(im, blocksize, fun):
xblocks = np.split(im, range(blocksize[0], im.shape[0], blocksize[0]), axis=0)
xblocks_proc = []
for xb in xblocks:
yblocks = np.split(xb, range(blocksize[1], im.shape[1], blocksize[1]), axis=1)
yblocks_proc = []
for yb in yblocks:
yb_proc = fun(yb)
yblocks_proc.append(yb_proc)
xblocks_proc.append(np.concatenate(yblocks_proc, axis=1))
proc = np.concatenate(xblocks_proc, axis=0)
return proc
def fun_reshape(a):
return np.reshape(a, (-1,1,a.shape[-1]), order='F')
def fun_mul(a, b):
return a*b
def BlockMM(nr, nc, Nb, m, x1):
'''
myfun = @(block_struct) reshape(block_struct.data,m,1);
x1 = blockproc(x1,[nr nc],myfun);
x1 = reshape(x1,m,Nb);
x1 = sum(x1,2);
x = reshape(x1,nr,nc);
'''
fun = fun_reshape
x1 = blockproc(x1, blocksize=(nr, nc), fun=fun)
x1 = np.reshape(x1, (m, Nb, x1.shape[-1]), order='F')
x1 = np.sum(x1, 1)
x = np.reshape(x1, (nr, nc, x1.shape[-1]), order='F')
return x
def INVLS(FB, FBC, F2B, FR, tau, Nb, nr, nc, m):
'''
x1 = FB.*FR;
FBR = BlockMM(nr,nc,Nb,m,x1);
invW = BlockMM(nr,nc,Nb,m,F2B);
invWBR = FBR./(invW + tau*Nb);
fun = @(block_struct) block_struct.data.*invWBR;
FCBinvWBR = blockproc(FBC,[nr,nc],fun);
FX = (FR-FCBinvWBR)/tau;
Xest = real(ifft2(FX));
'''
x1 = FB*FR
FBR = BlockMM(nr, nc, Nb, m, x1)
invW = BlockMM(nr, nc, Nb, m, F2B)
invWBR = FBR/(invW + tau*Nb)
FCBinvWBR = blockproc(FBC, [nr, nc], lambda im: fun_mul(im, invWBR))
FX = (FR-FCBinvWBR)/tau
Xest = np.real(np.fft.ifft2(FX, axes=(0, 1)))
return Xest
def psf2otf(psf, shape=None):
"""
Convert point-spread function to optical transfer function.
Compute the Fast Fourier Transform (FFT) of the point-spread
function (PSF) array and creates the optical transfer function (OTF)
array that is not influenced by the PSF off-centering.
By default, the OTF array is the same size as the PSF array.
To ensure that the OTF is not altered due to PSF off-centering, PSF2OTF
post-pads the PSF array (down or to the right) with zeros to match
dimensions specified in OUTSIZE, then circularly shifts the values of
the PSF array up (or to the left) until the central pixel reaches (1,1)
position.
Parameters
----------
psf : `numpy.ndarray`
PSF array
shape : int
Output shape of the OTF array
Returns
-------
otf : `numpy.ndarray`
OTF array
Notes
-----
Adapted from MATLAB psf2otf function
"""
if type(shape) == type(None):
shape = psf.shape
shape = np.array(shape)
if np.all(psf == 0):
# return np.zeros_like(psf)
return np.zeros(shape)
if len(psf.shape) == 1:
psf = psf.reshape((1, psf.shape[0]))
inshape = psf.shape
psf = zero_pad(psf, shape, position='corner')
for axis, axis_size in enumerate(inshape):
psf = np.roll(psf, -int(axis_size / 2), axis=axis)
# Compute the OTF
otf = np.fft.fft2(psf, axes=(0, 1))
# Estimate the rough number of operations involved in the FFT
# and discard the PSF imaginary part if within roundoff error
# roundoff error = machine epsilon = sys.float_info.epsilon
# or np.finfo().eps
n_ops = np.sum(psf.size * np.log2(psf.shape))
otf = np.real_if_close(otf, tol=n_ops)
return otf
def zero_pad(image, shape, position='corner'):
"""
Extends image to a certain size with zeros
Parameters
----------
image: real 2d `numpy.ndarray`
Input image
shape: tuple of int
Desired output shape of the image
position : str, optional
The position of the input image in the output one:
* 'corner'
top-left corner (default)
* 'center'
centered
Returns
-------
padded_img: real `numpy.ndarray`
The zero-padded image
"""
shape = np.asarray(shape, dtype=int)
imshape = np.asarray(image.shape, dtype=int)
if np.alltrue(imshape == shape):
return image
if np.any(shape <= 0):
raise ValueError("ZERO_PAD: null or negative shape given")
dshape = shape - imshape
if np.any(dshape < 0):
raise ValueError("ZERO_PAD: target size smaller than source one")
pad_img = np.zeros(shape, dtype=image.dtype)
idx, idy = np.indices(imshape)
if position == 'center':
if np.any(dshape % 2 != 0):
raise ValueError("ZERO_PAD: source and target shapes "
"have different parity.")
offx, offy = dshape // 2
else:
offx, offy = (0, 0)
pad_img[idx + offx, idy + offy] = image
return pad_img
def upsample_np(x, sf=3, center=False):
st = (sf-1)//2 if center else 0
z = np.zeros((x.shape[0]*sf, x.shape[1]*sf, x.shape[2]))
z[st::sf, st::sf, ...] = x
return z
def downsample_np(x, sf=3, center=False):
st = (sf-1)//2 if center else 0
return x[st::sf, st::sf, ...]
def imfilter_np(x, k):
'''
x: image, NxcxHxW
k: kernel, cx1xhxw
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x
def G_np(x, k, sf=3, center=False):
'''
x: image, NxcxHxW
k: kernel, cx1xhxw
Matlab function:
tmp = imfilter(x,h,'circular');
y = downsample2(tmp,K);
'''
x = downsample_np(imfilter_np(x, k), sf=sf, center=center)
return x
def Gt_np(x, k, sf=3, center=False):
'''
x: image, NxcxHxW
k: kernel, cx1xhxw
Matlab function:
tmp = upsample2(x,K);
y = imfilter(tmp,h,'circular');
'''
x = imfilter_np(upsample_np(x, sf=sf, center=center), k)
return x
if __name__ == '__main__':
img = util.imread_uint('test.bmp', 3)
img = util.uint2single(img)
k = anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6)
util.imshow(k*10)
for sf in [2, 3, 4]:
# modcrop
img = modcrop_np(img, sf=sf)
# 1) bicubic degradation
img_b = bicubic_degradation(img, sf=sf)
print(img_b.shape)
# 2) srmd degradation
img_s = srmd_degradation(img, k, sf=sf)
print(img_s.shape)
# 3) dpsr degradation
img_d = dpsr_degradation(img, k, sf=sf)
print(img_d.shape)
# 4) classical degradation
img_d = classical_degradation(img, k, sf=sf)
print(img_d.shape)
k = anisotropic_Gaussian(ksize=7, theta=0.25*np.pi, l1=0.01, l2=0.01)
#print(k)
# util.imshow(k*10)
k = shifted_anisotropic_Gaussian(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.8, max_var=10.8, noise_level=0.0)
# util.imshow(k*10)
# PCA
# pca_matrix = cal_pca_matrix(ksize=15, l_max=10.0, dim_pca=15, num_samples=12500)
# print(pca_matrix.shape)
# show_pca(pca_matrix)
# run utils/utils_sisr.py
# run utils_sisr.py
|