File size: 4,039 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch

import torchvision

from models import basicblock as B

def show_kv(net):
    for k, v in net.items():
        print(k)

# should run train debug mode first to get an initial model
#crt_net = torch.load('../../experiments/debug_SRResNet_bicx4_in3nf64nb16/models/8_G.pth')
#
#for k, v in crt_net.items():
#    print(k)
#for k, v in crt_net.items():
#    if k in pretrained_net:
#        crt_net[k] = pretrained_net[k]
#        print('replace ... ', k)

# x2 -> x4
#crt_net['model.5.weight'] = pretrained_net['model.2.weight']
#crt_net['model.5.bias'] = pretrained_net['model.2.bias']
#crt_net['model.8.weight'] = pretrained_net['model.5.weight']
#crt_net['model.8.bias'] = pretrained_net['model.5.bias']
#crt_net['model.10.weight'] = pretrained_net['model.7.weight']
#crt_net['model.10.bias'] = pretrained_net['model.7.bias']
#torch.save(crt_net, '../pretrained_tmp.pth')

# x2 -> x3
'''
in_filter = pretrained_net['model.2.weight'] # 256, 64, 3, 3
new_filter = torch.Tensor(576, 64, 3, 3)
new_filter[0:256, :, :, :] = in_filter
new_filter[256:512, :, :, :] = in_filter
new_filter[512:, :, :, :] = in_filter[0:576-512, :, :, :]
crt_net['model.2.weight'] = new_filter

in_bias = pretrained_net['model.2.bias']  # 256, 64, 3, 3
new_bias = torch.Tensor(576)
new_bias[0:256] = in_bias
new_bias[256:512] = in_bias
new_bias[512:] = in_bias[0:576 - 512]
crt_net['model.2.bias'] = new_bias

torch.save(crt_net, '../pretrained_tmp.pth')
'''

# x2 -> x8
'''
crt_net['model.5.weight'] = pretrained_net['model.2.weight']
crt_net['model.5.bias'] = pretrained_net['model.2.bias']
crt_net['model.8.weight'] = pretrained_net['model.2.weight']
crt_net['model.8.bias'] = pretrained_net['model.2.bias']
crt_net['model.11.weight'] = pretrained_net['model.5.weight']
crt_net['model.11.bias'] = pretrained_net['model.5.bias']
crt_net['model.13.weight'] = pretrained_net['model.7.weight']
crt_net['model.13.bias'] = pretrained_net['model.7.bias']
torch.save(crt_net, '../pretrained_tmp.pth')
'''

# x3/4/8 RGB -> Y

def rgb2gray_net(net, only_input=True):

    if only_input:
        in_filter = net['0.weight']
        in_new_filter = in_filter[:,0,:,:]*0.2989 + in_filter[:,1,:,:]*0.587 + in_filter[:,2,:,:]*0.114
        in_new_filter.unsqueeze_(1)
        net['0.weight'] = in_new_filter

#    out_filter = pretrained_net['model.13.weight']
#    out_new_filter = out_filter[0, :, :, :] * 0.2989 + out_filter[1, :, :, :] * 0.587 + \
#        out_filter[2, :, :, :] * 0.114
#    out_new_filter.unsqueeze_(0)
#    crt_net['model.13.weight'] = out_new_filter
#    out_bias = pretrained_net['model.13.bias']
#    out_new_bias = out_bias[0] * 0.2989 + out_bias[1] * 0.587 + out_bias[2] * 0.114
#    out_new_bias = torch.Tensor(1).fill_(out_new_bias)
#    crt_net['model.13.bias'] = out_new_bias

#    torch.save(crt_net, '../pretrained_tmp.pth')

    return net



if __name__ == '__main__':
    
    net = torchvision.models.vgg19(pretrained=True)
    for k,v in net.features.named_parameters():
        if k=='0.weight':
            in_new_filter = v[:,0,:,:]*0.2989 + v[:,1,:,:]*0.587 + v[:,2,:,:]*0.114
            in_new_filter.unsqueeze_(1)
            v = in_new_filter
            print(v.shape)
            print(v[0,0,0,0])
        if k=='0.bias':
            in_new_bias = v
            print(v[0])

    print(net.features[0])

    net.features[0] = B.conv(1, 64, mode='C') 

    print(net.features[0])
    net.features[0].weight.data=in_new_filter
    net.features[0].bias.data=in_new_bias

    for k,v in net.features.named_parameters():
        if k=='0.weight':
            print(v[0,0,0,0])
        if k=='0.bias':
            print(v[0])

    # transfer parameters of old model to new one
    model_old = torch.load(model_path)
    state_dict = model.state_dict()
    for ((key, param),(key2, param2)) in zip(model_old.items(), state_dict.items()):
        state_dict[key2] = param
        print([key, key2])
       # print([param.size(), param2.size()])
    torch.save(state_dict, 'model_new.pth') 


   # rgb2gray_net(net)