Spaces:
Running
Running
File size: 16,106 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import torch.nn as nn
import torch
import numpy as np
'''
---- 1) FLOPs: floating point operations
---- 2) #Activations: the number of elements of all ‘Conv2d’ outputs
---- 3) #Conv2d: the number of ‘Conv2d’ layers
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# 21/July/2020
# --------------------------------------------
# Reference
https://github.com/sovrasov/flops-counter.pytorch.git
# If you use this code, please consider the following citation:
@inproceedings{zhang2020aim, %
title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results},
author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others},
booktitle={European Conference on Computer Vision Workshops},
year={2020}
}
# --------------------------------------------
'''
def get_model_flops(model, input_res, print_per_layer_stat=True,
input_constructor=None):
assert type(input_res) is tuple, 'Please provide the size of the input image.'
assert len(input_res) >= 3, 'Input image should have 3 dimensions.'
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
device = list(flops_model.parameters())[-1].device
batch = torch.FloatTensor(1, *input_res).to(device)
_ = flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model)
flops_count = flops_model.compute_average_flops_cost()
flops_model.stop_flops_count()
return flops_count
def get_model_activation(model, input_res, input_constructor=None):
assert type(input_res) is tuple, 'Please provide the size of the input image.'
assert len(input_res) >= 3, 'Input image should have 3 dimensions.'
activation_model = add_activation_counting_methods(model)
activation_model.eval().start_activation_count()
if input_constructor:
input = input_constructor(input_res)
_ = activation_model(**input)
else:
device = list(activation_model.parameters())[-1].device
batch = torch.FloatTensor(1, *input_res).to(device)
_ = activation_model(batch)
activation_count, num_conv = activation_model.compute_average_activation_cost()
activation_model.stop_activation_count()
return activation_count, num_conv
def get_model_complexity_info(model, input_res, print_per_layer_stat=True, as_strings=True,
input_constructor=None):
assert type(input_res) is tuple
assert len(input_res) >= 3
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
batch = torch.FloatTensor(1, *input_res)
_ = flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model)
flops_count = flops_model.compute_average_flops_cost()
params_count = get_model_parameters_number(flops_model)
flops_model.stop_flops_count()
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GMac', precision=2):
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GMac'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MMac'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KMac'
else:
return str(flops) + ' Mac'
else:
if units == 'GMac':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MMac':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KMac':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' Mac'
def params_to_string(params_num):
if params_num // 10 ** 6 > 0:
return str(round(params_num / 10 ** 6, 2)) + ' M'
elif params_num // 10 ** 3:
return str(round(params_num / 10 ** 3, 2)) + ' k'
else:
return str(params_num)
def print_model_with_flops(model, units='GMac', precision=3):
total_flops = model.compute_average_flops_cost()
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__ / model.__batch_counter__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def flops_repr(self):
accumulated_flops_cost = self.accumulate_flops()
return ', '.join([flops_to_string(accumulated_flops_cost, units=units, precision=precision),
'{:.3%} MACs'.format(accumulated_flops_cost / total_flops),
self.original_extra_repr()])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(model)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params_num
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
# embed()
net_main_module.start_flops_count = start_flops_count.__get__(net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(net_main_module)
net_main_module.reset_flops_count()
return net_main_module
def compute_average_flops_cost(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Returns current mean flops consumption per image.
"""
flops_sum = 0
for module in self.modules():
if is_supported_instance(module):
flops_sum += module.__flops__
return flops_sum
def start_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Activates the computation of mean flops consumption per image.
Call it before you run the network.
"""
self.apply(add_flops_counter_hook_function)
def stop_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Stops computing the mean flops consumption per image.
Call whenever you want to pause the computation.
"""
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
self.apply(add_flops_counter_variable_or_reset)
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
if isinstance(module, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d)):
handle = module.register_forward_hook(conv_flops_counter_hook)
elif isinstance(module, (nn.ReLU, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6)):
handle = module.register_forward_hook(relu_flops_counter_hook)
elif isinstance(module, nn.Linear):
handle = module.register_forward_hook(linear_flops_counter_hook)
elif isinstance(module, (nn.BatchNorm2d)):
handle = module.register_forward_hook(bn_flops_counter_hook)
else:
handle = module.register_forward_hook(empty_flops_counter_hook)
module.__flops_handle__ = handle
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
module.__flops__ = 0
# ---- Internal functions
def is_supported_instance(module):
if isinstance(module,
(
nn.Conv2d, nn.ConvTranspose2d,
nn.BatchNorm2d,
nn.Linear,
nn.ReLU, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6,
)):
return True
return False
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
# input = input[0]
batch_size = output.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = np.prod(kernel_dims) * in_channels * filters_per_channel
active_elements_count = batch_size * np.prod(output_dims)
overall_conv_flops = int(conv_per_position_flops) * int(active_elements_count)
# overall_flops = overall_conv_flops
conv_module.__flops__ += int(overall_conv_flops)
# conv_module.__output_dims__ = output_dims
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
# print(module.__flops__, id(module))
# print(module)
def linear_flops_counter_hook(module, input, output):
input = input[0]
if len(input.shape) == 1:
batch_size = 1
module.__flops__ += int(batch_size * input.shape[0] * output.shape[0])
else:
batch_size = input.shape[0]
module.__flops__ += int(batch_size * input.shape[1] * output.shape[1])
def bn_flops_counter_hook(module, input, output):
# input = input[0]
# TODO: need to check here
# batch_flops = np.prod(input.shape)
# if module.affine:
# batch_flops *= 2
# module.__flops__ += int(batch_flops)
batch = output.shape[0]
output_dims = output.shape[2:]
channels = module.num_features
batch_flops = batch * channels * np.prod(output_dims)
if module.affine:
batch_flops *= 2
module.__flops__ += int(batch_flops)
# ---- Count the number of convolutional layers and the activation
def add_activation_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
# embed()
net_main_module.start_activation_count = start_activation_count.__get__(net_main_module)
net_main_module.stop_activation_count = stop_activation_count.__get__(net_main_module)
net_main_module.reset_activation_count = reset_activation_count.__get__(net_main_module)
net_main_module.compute_average_activation_cost = compute_average_activation_cost.__get__(net_main_module)
net_main_module.reset_activation_count()
return net_main_module
def compute_average_activation_cost(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Returns current mean activation consumption per image.
"""
activation_sum = 0
num_conv = 0
for module in self.modules():
if is_supported_instance_for_activation(module):
activation_sum += module.__activation__
num_conv += module.__num_conv__
return activation_sum, num_conv
def start_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Activates the computation of mean activation consumption per image.
Call it before you run the network.
"""
self.apply(add_activation_counter_hook_function)
def stop_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Stops computing the mean activation consumption per image.
Call whenever you want to pause the computation.
"""
self.apply(remove_activation_counter_hook_function)
def reset_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
self.apply(add_activation_counter_variable_or_reset)
def add_activation_counter_hook_function(module):
if is_supported_instance_for_activation(module):
if hasattr(module, '__activation_handle__'):
return
if isinstance(module, (nn.Conv2d, nn.ConvTranspose2d)):
handle = module.register_forward_hook(conv_activation_counter_hook)
module.__activation_handle__ = handle
def remove_activation_counter_hook_function(module):
if is_supported_instance_for_activation(module):
if hasattr(module, '__activation_handle__'):
module.__activation_handle__.remove()
del module.__activation_handle__
def add_activation_counter_variable_or_reset(module):
if is_supported_instance_for_activation(module):
module.__activation__ = 0
module.__num_conv__ = 0
def is_supported_instance_for_activation(module):
if isinstance(module,
(
nn.Conv2d, nn.ConvTranspose2d,
)):
return True
return False
def conv_activation_counter_hook(module, input, output):
"""
Calculate the activations in the convolutional operation.
Reference: Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár, Designing Network Design Spaces.
:param module:
:param input:
:param output:
:return:
"""
module.__activation__ += output.numel()
module.__num_conv__ += 1
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def dconv_flops_counter_hook(dconv_module, input, output):
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
m_channels, in_channels, kernel_dim1, _, = dconv_module.weight.shape
out_channels, _, kernel_dim2, _, = dconv_module.projection.shape
# groups = dconv_module.groups
# filters_per_channel = out_channels // groups
conv_per_position_flops1 = kernel_dim1 ** 2 * in_channels * m_channels
conv_per_position_flops2 = kernel_dim2 ** 2 * out_channels * m_channels
active_elements_count = batch_size * np.prod(output_dims)
overall_conv_flops = (conv_per_position_flops1 + conv_per_position_flops2) * active_elements_count
overall_flops = overall_conv_flops
dconv_module.__flops__ += int(overall_flops)
# dconv_module.__output_dims__ = output_dims
|