Spaces:
Running
Running
File size: 7,001 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# -*- coding: utf-8 -*-
import numpy as np
import torch
from collections import OrderedDict
# import scipy.io as io
import hdf5storage
"""
# --------------------------------------------
# Convert matconvnet SimpleNN model into pytorch model
# --------------------------------------------
# Kai Zhang ([email protected])
# https://github.com/cszn
# 28/Nov/2019
# --------------------------------------------
"""
def weights2tensor(x, squeeze=False, in_features=None, out_features=None):
"""Modified version of https://github.com/albanie/pytorch-mcn
Adjust memory layout and load weights as torch tensor
Args:
x (ndaray): a numpy array, corresponding to a set of network weights
stored in column major order
squeeze (bool) [False]: whether to squeeze the tensor (i.e. remove
singletons from the trailing dimensions. So after converting to
pytorch layout (C_out, C_in, H, W), if the shape is (A, B, 1, 1)
it will be reshaped to a matrix with shape (A,B).
in_features (int :: None): used to reshape weights for a linear block.
out_features (int :: None): used to reshape weights for a linear block.
Returns:
torch.tensor: a permuted sets of weights, matching the pytorch layout
convention
"""
if x.ndim == 4:
x = x.transpose((3, 2, 0, 1))
# for FFDNet, pixel-shuffle layer
# if x.shape[1]==13:
# x=x[:,[0,2,1,3, 4,6,5,7, 8,10,9,11, 12],:,:]
# if x.shape[0]==12:
# x=x[[0,2,1,3, 4,6,5,7, 8,10,9,11],:,:,:]
# if x.shape[1]==5:
# x=x[:,[0,2,1,3, 4],:,:]
# if x.shape[0]==4:
# x=x[[0,2,1,3],:,:,:]
## for SRMD, pixel-shuffle layer
# if x.shape[0]==12:
# x=x[[0,2,1,3, 4,6,5,7, 8,10,9,11],:,:,:]
# if x.shape[0]==27:
# x=x[[0,3,6,1,4,7,2,5,8, 0+9,3+9,6+9,1+9,4+9,7+9,2+9,5+9,8+9, 0+18,3+18,6+18,1+18,4+18,7+18,2+18,5+18,8+18],:,:,:]
# if x.shape[0]==48:
# x=x[[0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15, 0+16,4+16,8+16,12+16,1+16,5+16,9+16,13+16,2+16,6+16,10+16,14+16,3+16,7+16,11+16,15+16, 0+32,4+32,8+32,12+32,1+32,5+32,9+32,13+32,2+32,6+32,10+32,14+32,3+32,7+32,11+32,15+32],:,:,:]
elif x.ndim == 3: # add by Kai
x = x[:,:,:,None]
x = x.transpose((3, 2, 0, 1))
elif x.ndim == 2:
if x.shape[1] == 1:
x = x.flatten()
if squeeze:
if in_features and out_features:
x = x.reshape((out_features, in_features))
x = np.squeeze(x)
return torch.from_numpy(np.ascontiguousarray(x))
def save_model(network, save_path):
state_dict = network.state_dict()
for key, param in state_dict.items():
state_dict[key] = param.cpu()
torch.save(state_dict, save_path)
if __name__ == '__main__':
# from utils import utils_logger
# import logging
# utils_logger.logger_info('a', 'a.log')
# logger = logging.getLogger('a')
#
# mcn = hdf5storage.loadmat('/model_zoo/matfile/FFDNet_Clip_gray.mat')
mcn = hdf5storage.loadmat('models/modelcolor.mat')
#logger.info(mcn['CNNdenoiser'][0][0][0][1][0][0][0][0])
mat_net = OrderedDict()
for idx in range(25):
mat_net[str(idx)] = OrderedDict()
count = -1
print(idx)
for i in range(13):
if mcn['CNNdenoiser'][0][idx][0][i][0][0][0][0] == 'conv':
count += 1
w = mcn['CNNdenoiser'][0][idx][0][i][0][1][0][0]
# print(w.shape)
w = weights2tensor(w)
# print(w.shape)
b = mcn['CNNdenoiser'][0][idx][0][i][0][1][0][1]
b = weights2tensor(b)
print(b.shape)
mat_net[str(idx)]['model.{:d}.weight'.format(count*2)] = w
mat_net[str(idx)]['model.{:d}.bias'.format(count*2)] = b
torch.save(mat_net, 'model_zoo/modelcolor.pth')
# from models.network_dncnn import IRCNN as net
# network = net(in_nc=3, out_nc=3, nc=64)
# state_dict = network.state_dict()
#
# #show_kv(state_dict)
#
# for i in range(len(mcn['net'][0][0][0])):
# print(mcn['net'][0][0][0][i][0][0][0][0])
#
# count = -1
# mat_net = OrderedDict()
# for i in range(len(mcn['net'][0][0][0])):
# if mcn['net'][0][0][0][i][0][0][0][0] == 'conv':
#
# count += 1
# w = mcn['net'][0][0][0][i][0][1][0][0]
# print(w.shape)
# w = weights2tensor(w)
# print(w.shape)
#
# b = mcn['net'][0][0][0][i][0][1][0][1]
# b = weights2tensor(b)
# print(b.shape)
#
# mat_net['model.{:d}.weight'.format(count*2)] = w
# mat_net['model.{:d}.bias'.format(count*2)] = b
#
# torch.save(mat_net, 'E:/pytorch/KAIR_ongoing/model_zoo/ffdnet_gray_clip.pth')
#
#
#
# crt_net = torch.load('E:/pytorch/KAIR_ongoing/model_zoo/imdn_x4.pth')
# def show_kv(net):
# for k, v in net.items():
# print(k)
#
# show_kv(crt_net)
# from models.network_dncnn import DnCNN as net
# network = net(in_nc=2, out_nc=1, nc=64, nb=20, act_mode='R')
# from models.network_srmd import SRMD as net
# #network = net(in_nc=1, out_nc=1, nc=64, nb=15, act_mode='R')
# network = net(in_nc=19, out_nc=3, nc=128, nb=12, upscale=4, act_mode='R', upsample_mode='pixelshuffle')
#
# from models.network_rrdb import RRDB as net
# network = net(in_nc=3, out_nc=3, nc=64, nb=23, gc=32, upscale=4, act_mode='L', upsample_mode='upconv')
#
# state_dict = network.state_dict()
# for key, param in state_dict.items():
# print(key)
# from models.network_imdn import IMDN as net
# network = net(in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle')
# state_dict = network.state_dict()
# mat_net = OrderedDict()
# for ((key, param),(key2, param2)) in zip(state_dict.items(), crt_net.items()):
# mat_net[key] = param2
# torch.save(mat_net, 'model_zoo/imdn_x4_1.pth')
#
# net_old = torch.load('net_old.pth')
# def show_kv(net):
# for k, v in net.items():
# print(k)
#
# show_kv(net_old)
# from models.network_dpsr import MSRResNet_prior as net
# model = net(in_nc=4, out_nc=3, nc=96, nb=16, upscale=4, act_mode='R', upsample_mode='pixelshuffle')
# state_dict = network.state_dict()
# net_new = OrderedDict()
# for ((key, param),(key_old, param_old)) in zip(state_dict.items(), net_old.items()):
# net_new[key] = param_old
# torch.save(net_new, 'net_new.pth')
# print(key)
# print(param.size())
# run utils/utils_matconvnet.py
|