File size: 7,001 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
import numpy as np
import torch
from collections import OrderedDict

# import scipy.io as io
import hdf5storage

"""

# --------------------------------------------

# Convert matconvnet SimpleNN model into pytorch model

# --------------------------------------------

# Kai Zhang ([email protected])

# https://github.com/cszn

# 28/Nov/2019

# --------------------------------------------

"""


def weights2tensor(x, squeeze=False, in_features=None, out_features=None):
    """Modified version of https://github.com/albanie/pytorch-mcn

    Adjust memory layout and load weights as torch tensor

    Args:

        x (ndaray): a numpy array, corresponding to a set of network weights

           stored in column major order

        squeeze (bool) [False]: whether to squeeze the tensor (i.e. remove

           singletons from the trailing dimensions. So after converting to

           pytorch layout (C_out, C_in, H, W), if the shape is (A, B, 1, 1)

           it will be reshaped to a matrix with shape (A,B).

        in_features (int :: None): used to reshape weights for a linear block.

        out_features (int :: None): used to reshape weights for a linear block.

    Returns:

        torch.tensor: a permuted sets of weights, matching the pytorch layout

        convention

    """
    if x.ndim == 4:
        x = x.transpose((3, 2, 0, 1))
# for FFDNet, pixel-shuffle layer
#        if x.shape[1]==13:
#            x=x[:,[0,2,1,3,  4,6,5,7, 8,10,9,11, 12],:,:]
#        if x.shape[0]==12:   
#            x=x[[0,2,1,3,  4,6,5,7, 8,10,9,11],:,:,:]
#        if x.shape[1]==5:
#            x=x[:,[0,2,1,3,  4],:,:]
#        if x.shape[0]==4:   
#            x=x[[0,2,1,3],:,:,:]
## for SRMD, pixel-shuffle layer
#        if x.shape[0]==12:   
#            x=x[[0,2,1,3,  4,6,5,7, 8,10,9,11],:,:,:]
#        if x.shape[0]==27:
#            x=x[[0,3,6,1,4,7,2,5,8, 0+9,3+9,6+9,1+9,4+9,7+9,2+9,5+9,8+9, 0+18,3+18,6+18,1+18,4+18,7+18,2+18,5+18,8+18],:,:,:]
#        if x.shape[0]==48:   
#            x=x[[0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15,  0+16,4+16,8+16,12+16,1+16,5+16,9+16,13+16,2+16,6+16,10+16,14+16,3+16,7+16,11+16,15+16,  0+32,4+32,8+32,12+32,1+32,5+32,9+32,13+32,2+32,6+32,10+32,14+32,3+32,7+32,11+32,15+32],:,:,:]

    elif x.ndim == 3:  # add by Kai
        x = x[:,:,:,None]
        x = x.transpose((3, 2, 0, 1))
    elif x.ndim == 2:
        if x.shape[1] == 1:
            x = x.flatten()
    if squeeze:
        if in_features and out_features:
            x = x.reshape((out_features, in_features))
        x = np.squeeze(x)
    return torch.from_numpy(np.ascontiguousarray(x))


def save_model(network, save_path):
    state_dict = network.state_dict()
    for key, param in state_dict.items():
        state_dict[key] = param.cpu()
    torch.save(state_dict, save_path)


if __name__ == '__main__':
    
    
#    from utils import utils_logger
#    import logging
#    utils_logger.logger_info('a', 'a.log')
#    logger = logging.getLogger('a')
#    
    # mcn = hdf5storage.loadmat('/model_zoo/matfile/FFDNet_Clip_gray.mat')
    mcn = hdf5storage.loadmat('models/modelcolor.mat')
    
    
    #logger.info(mcn['CNNdenoiser'][0][0][0][1][0][0][0][0])

    mat_net = OrderedDict()
    for idx in range(25):
        mat_net[str(idx)] = OrderedDict()
        count = -1
        
        print(idx)
        for i in range(13):
            
            if mcn['CNNdenoiser'][0][idx][0][i][0][0][0][0] == 'conv':
                
                count += 1
                w = mcn['CNNdenoiser'][0][idx][0][i][0][1][0][0]
               # print(w.shape)
                w = weights2tensor(w)
               # print(w.shape)
                
                b = mcn['CNNdenoiser'][0][idx][0][i][0][1][0][1]
                b = weights2tensor(b)
                print(b.shape)

                mat_net[str(idx)]['model.{:d}.weight'.format(count*2)] = w
                mat_net[str(idx)]['model.{:d}.bias'.format(count*2)] = b

    torch.save(mat_net, 'model_zoo/modelcolor.pth')
   


#    from models.network_dncnn import IRCNN as net
#    network = net(in_nc=3, out_nc=3, nc=64)
#    state_dict = network.state_dict()
#
#    #show_kv(state_dict)
#
#    for i in range(len(mcn['net'][0][0][0])):
#        print(mcn['net'][0][0][0][i][0][0][0][0])
#
#    count = -1
#    mat_net = OrderedDict()
#    for i in range(len(mcn['net'][0][0][0])):
#        if mcn['net'][0][0][0][i][0][0][0][0] == 'conv':
#            
#            count += 1
#            w = mcn['net'][0][0][0][i][0][1][0][0]
#            print(w.shape)
#            w = weights2tensor(w)
#            print(w.shape)
#            
#            b = mcn['net'][0][0][0][i][0][1][0][1]
#            b = weights2tensor(b)
#            print(b.shape)
#            
#            mat_net['model.{:d}.weight'.format(count*2)] = w
#            mat_net['model.{:d}.bias'.format(count*2)] = b
#
#    torch.save(mat_net, 'E:/pytorch/KAIR_ongoing/model_zoo/ffdnet_gray_clip.pth')
#    
#    
#
#    crt_net = torch.load('E:/pytorch/KAIR_ongoing/model_zoo/imdn_x4.pth')
#    def show_kv(net):
#        for k, v in net.items():
#            print(k)
#
#    show_kv(crt_net)


#    from models.network_dncnn import DnCNN as net
#    network = net(in_nc=2, out_nc=1, nc=64, nb=20, act_mode='R')

#    from models.network_srmd import SRMD as net
#    #network = net(in_nc=1, out_nc=1, nc=64, nb=15, act_mode='R')
#    network = net(in_nc=19, out_nc=3, nc=128, nb=12, upscale=4, act_mode='R', upsample_mode='pixelshuffle')
#    
#    from models.network_rrdb import RRDB as net
#    network = net(in_nc=3, out_nc=3, nc=64, nb=23, gc=32, upscale=4, act_mode='L', upsample_mode='upconv')
#    
#    state_dict = network.state_dict()
#    for key, param in state_dict.items():
#        print(key)
#    from models.network_imdn import IMDN as net
#    network = net(in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle')
#    state_dict = network.state_dict()
#    mat_net = OrderedDict()
#    for ((key, param),(key2, param2)) in zip(state_dict.items(), crt_net.items()):
#        mat_net[key] = param2
#    torch.save(mat_net, 'model_zoo/imdn_x4_1.pth') 
#        

#    net_old = torch.load('net_old.pth')
#    def show_kv(net):
#        for k, v in net.items():
#            print(k)
#
#    show_kv(net_old)
#    from models.network_dpsr import MSRResNet_prior as net
#    model = net(in_nc=4, out_nc=3, nc=96, nb=16, upscale=4, act_mode='R', upsample_mode='pixelshuffle')
#    state_dict = network.state_dict()
#    net_new = OrderedDict()
#    for ((key, param),(key_old, param_old)) in zip(state_dict.items(), net_old.items()):
#        net_new[key] = param_old
#    torch.save(net_new, 'net_new.pth') 


   # print(key)
      #  print(param.size())



    # run utils/utils_matconvnet.py