File size: 2,593 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import torch.nn as nn
import models.basicblock as B
import torch

"""
# --------------------------------------------
# FFDNet (15 or 12 conv layers)
# --------------------------------------------
Reference:
@article{zhang2018ffdnet,
  title={FFDNet: Toward a fast and flexible solution for CNN-based image denoising},
  author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
  journal={IEEE Transactions on Image Processing},
  volume={27},
  number={9},
  pages={4608--4622},
  year={2018},
  publisher={IEEE}
}
"""


# --------------------------------------------
# FFDNet
# --------------------------------------------
class FFDNet(nn.Module):
    def __init__(self, in_nc=1, out_nc=1, nc=64, nb=15, act_mode='R'):
        """
        # ------------------------------------
        in_nc: channel number of input
        out_nc: channel number of output
        nc: channel number
        nb: total number of conv layers
        act_mode: batch norm + activation function; 'BR' means BN+ReLU.
        # ------------------------------------
        # ------------------------------------
        """
        super(FFDNet, self).__init__()
        assert 'R' in act_mode or 'L' in act_mode, 'Examples of activation function: R, L, BR, BL, IR, IL'
        bias = True
        sf = 2

        self.m_down = B.PixelUnShuffle(upscale_factor=sf)

        m_head = B.conv(in_nc*sf*sf+1, nc, mode='C'+act_mode[-1], bias=bias)
        m_body = [B.conv(nc, nc, mode='C'+act_mode, bias=bias) for _ in range(nb-2)]
        m_tail = B.conv(nc, out_nc*sf*sf, mode='C', bias=bias)

        self.model = B.sequential(m_head, *m_body, m_tail)

        self.m_up = nn.PixelShuffle(upscale_factor=sf)

    def forward(self, x, sigma):

        h, w = x.size()[-2:]
        paddingBottom = int(np.ceil(h/2)*2-h)
        paddingRight = int(np.ceil(w/2)*2-w)
        x = torch.nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x)

        x = self.m_down(x)
        # m = torch.ones(sigma.size()[0], sigma.size()[1], x.size()[-2], x.size()[-1]).type_as(x).mul(sigma)
        m = sigma.repeat(1, 1, x.size()[-2], x.size()[-1])
        x = torch.cat((x, m), 1)
        x = self.model(x)
        x = self.m_up(x)
        
        x = x[..., :h, :w]
        return x


if __name__ == '__main__':
    from utils import utils_model
    model = FFDNet(in_nc=1, out_nc=1, nc=64, nb=15, act_mode='R')
    print(utils_model.describe_model(model))

    x = torch.randn((2,1,240,240))
    sigma = torch.randn(2,1,1,1)
    x = model(x, sigma)
    print(x.shape)

    #  run models/network_ffdnet.py