Spaces:
Running
Running
File size: 11,350 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
from torch.optim import Adam
from models.select_network import define_G
from models.model_base import ModelBase
from models.loss import CharbonnierLoss
from models.loss_ssim import SSIMLoss
from utils.utils_model import test_mode
from utils.utils_regularizers import regularizer_orth, regularizer_clip
class ModelPlain(ModelBase):
"""Train with pixel loss"""
def __init__(self, opt):
super(ModelPlain, self).__init__(opt)
# ------------------------------------
# define network
# ------------------------------------
self.opt_train = self.opt['train'] # training option
self.netG = define_G(opt)
self.netG = self.model_to_device(self.netG)
if self.opt_train['E_decay'] > 0:
self.netE = define_G(opt).to(self.device).eval()
"""
# ----------------------------------------
# Preparation before training with data
# Save model during training
# ----------------------------------------
"""
# ----------------------------------------
# initialize training
# ----------------------------------------
def init_train(self):
self.load() # load model
self.netG.train() # set training mode,for BN
self.define_loss() # define loss
self.define_optimizer() # define optimizer
self.load_optimizers() # load optimizer
self.define_scheduler() # define scheduler
self.log_dict = OrderedDict() # log
# ----------------------------------------
# load pre-trained G model
# ----------------------------------------
def load(self):
load_path_G = self.opt['path']['pretrained_netG']
if load_path_G is not None:
print('Loading model for G [{:s}] ...'.format(load_path_G))
self.load_network(load_path_G, self.netG, strict=self.opt_train['G_param_strict'], param_key='params')
load_path_E = self.opt['path']['pretrained_netE']
if self.opt_train['E_decay'] > 0:
if load_path_E is not None:
print('Loading model for E [{:s}] ...'.format(load_path_E))
self.load_network(load_path_E, self.netE, strict=self.opt_train['E_param_strict'], param_key='params_ema')
else:
print('Copying model for E ...')
self.update_E(0)
self.netE.eval()
# ----------------------------------------
# load optimizer
# ----------------------------------------
def load_optimizers(self):
load_path_optimizerG = self.opt['path']['pretrained_optimizerG']
if load_path_optimizerG is not None and self.opt_train['G_optimizer_reuse']:
print('Loading optimizerG [{:s}] ...'.format(load_path_optimizerG))
self.load_optimizer(load_path_optimizerG, self.G_optimizer)
# ----------------------------------------
# save model / optimizer(optional)
# ----------------------------------------
def save(self, iter_label):
self.save_network(self.save_dir, self.netG, 'G', iter_label)
if self.opt_train['E_decay'] > 0:
self.save_network(self.save_dir, self.netE, 'E', iter_label)
if self.opt_train['G_optimizer_reuse']:
self.save_optimizer(self.save_dir, self.G_optimizer, 'optimizerG', iter_label)
# ----------------------------------------
# define loss
# ----------------------------------------
def define_loss(self):
G_lossfn_type = self.opt_train['G_lossfn_type']
if G_lossfn_type == 'l1':
self.G_lossfn = nn.L1Loss().to(self.device)
elif G_lossfn_type == 'l2':
self.G_lossfn = nn.MSELoss().to(self.device)
elif G_lossfn_type == 'l2sum':
self.G_lossfn = nn.MSELoss(reduction='sum').to(self.device)
elif G_lossfn_type == 'ssim':
self.G_lossfn = SSIMLoss().to(self.device)
elif G_lossfn_type == 'charbonnier':
self.G_lossfn = CharbonnierLoss(self.opt_train['G_charbonnier_eps']).to(self.device)
else:
raise NotImplementedError('Loss type [{:s}] is not found.'.format(G_lossfn_type))
self.G_lossfn_weight = self.opt_train['G_lossfn_weight']
# ----------------------------------------
# define optimizer
# ----------------------------------------
def define_optimizer(self):
G_optim_params = []
for k, v in self.netG.named_parameters():
if v.requires_grad:
G_optim_params.append(v)
else:
print('Params [{:s}] will not optimize.'.format(k))
if self.opt_train['G_optimizer_type'] == 'adam':
self.G_optimizer = Adam(G_optim_params, lr=self.opt_train['G_optimizer_lr'],
betas=self.opt_train['G_optimizer_betas'],
weight_decay=self.opt_train['G_optimizer_wd'])
else:
raise NotImplementedError
# ----------------------------------------
# define scheduler, only "MultiStepLR"
# ----------------------------------------
def define_scheduler(self):
if self.opt_train['G_scheduler_type'] == 'MultiStepLR':
self.schedulers.append(lr_scheduler.MultiStepLR(self.G_optimizer,
self.opt_train['G_scheduler_milestones'],
self.opt_train['G_scheduler_gamma']
))
elif self.opt_train['G_scheduler_type'] == 'CosineAnnealingWarmRestarts':
self.schedulers.append(lr_scheduler.CosineAnnealingWarmRestarts(self.G_optimizer,
self.opt_train['G_scheduler_periods'],
self.opt_train['G_scheduler_restart_weights'],
self.opt_train['G_scheduler_eta_min']
))
else:
raise NotImplementedError
"""
# ----------------------------------------
# Optimization during training with data
# Testing/evaluation
# ----------------------------------------
"""
# ----------------------------------------
# feed L/H data
# ----------------------------------------
def feed_data(self, data, need_H=True):
self.L = data['L'].to(self.device)
if need_H:
self.H = data['H'].to(self.device)
# ----------------------------------------
# feed L to netG
# ----------------------------------------
def netG_forward(self):
self.E = self.netG(self.L)
# ----------------------------------------
# update parameters and get loss
# ----------------------------------------
def optimize_parameters(self, current_step):
self.G_optimizer.zero_grad()
self.netG_forward()
G_loss = self.G_lossfn_weight * self.G_lossfn(self.E, self.H)
G_loss.backward()
# ------------------------------------
# clip_grad
# ------------------------------------
# `clip_grad_norm` helps prevent the exploding gradient problem.
G_optimizer_clipgrad = self.opt_train['G_optimizer_clipgrad'] if self.opt_train['G_optimizer_clipgrad'] else 0
if G_optimizer_clipgrad > 0:
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=self.opt_train['G_optimizer_clipgrad'], norm_type=2)
self.G_optimizer.step()
# ------------------------------------
# regularizer
# ------------------------------------
G_regularizer_orthstep = self.opt_train['G_regularizer_orthstep'] if self.opt_train['G_regularizer_orthstep'] else 0
if G_regularizer_orthstep > 0 and current_step % G_regularizer_orthstep == 0 and current_step % self.opt['train']['checkpoint_save'] != 0:
self.netG.apply(regularizer_orth)
G_regularizer_clipstep = self.opt_train['G_regularizer_clipstep'] if self.opt_train['G_regularizer_clipstep'] else 0
if G_regularizer_clipstep > 0 and current_step % G_regularizer_clipstep == 0 and current_step % self.opt['train']['checkpoint_save'] != 0:
self.netG.apply(regularizer_clip)
# self.log_dict['G_loss'] = G_loss.item()/self.E.size()[0] # if `reduction='sum'`
self.log_dict['G_loss'] = G_loss.item()
if self.opt_train['E_decay'] > 0:
self.update_E(self.opt_train['E_decay'])
# ----------------------------------------
# test / inference
# ----------------------------------------
def test(self):
self.netG.eval()
with torch.no_grad():
self.netG_forward()
self.netG.train()
# ----------------------------------------
# test / inference x8
# ----------------------------------------
def testx8(self):
self.netG.eval()
with torch.no_grad():
self.E = test_mode(self.netG, self.L, mode=3, sf=self.opt['scale'], modulo=1)
self.netG.train()
# ----------------------------------------
# get log_dict
# ----------------------------------------
def current_log(self):
return self.log_dict
# ----------------------------------------
# get L, E, H image
# ----------------------------------------
def current_visuals(self, need_H=True):
out_dict = OrderedDict()
out_dict['L'] = self.L.detach()[0].float().cpu()
out_dict['E'] = self.E.detach()[0].float().cpu()
if need_H:
out_dict['H'] = self.H.detach()[0].float().cpu()
return out_dict
# ----------------------------------------
# get L, E, H batch images
# ----------------------------------------
def current_results(self, need_H=True):
out_dict = OrderedDict()
out_dict['L'] = self.L.detach().float().cpu()
out_dict['E'] = self.E.detach().float().cpu()
if need_H:
out_dict['H'] = self.H.detach().float().cpu()
return out_dict
"""
# ----------------------------------------
# Information of netG
# ----------------------------------------
"""
# ----------------------------------------
# print network
# ----------------------------------------
def print_network(self):
msg = self.describe_network(self.netG)
print(msg)
# ----------------------------------------
# print params
# ----------------------------------------
def print_params(self):
msg = self.describe_params(self.netG)
print(msg)
# ----------------------------------------
# network information
# ----------------------------------------
def info_network(self):
msg = self.describe_network(self.netG)
return msg
# ----------------------------------------
# params information
# ----------------------------------------
def info_params(self):
msg = self.describe_params(self.netG)
return msg
|