File size: 7,712 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import torch
import torch.nn as nn
from utils.utils_bnorm import merge_bn, tidy_sequential
from torch.nn.parallel import DataParallel, DistributedDataParallel


class ModelBase():
    def __init__(self, opt):
        self.opt = opt                         # opt
        self.save_dir = opt['path']['models']  # save models
        self.device = torch.device('cuda' if opt['gpu_ids'] is not None else 'cpu')
        self.is_train = opt['is_train']        # training or not
        self.schedulers = []                   # schedulers

    """
    # ----------------------------------------
    # Preparation before training with data
    # Save model during training
    # ----------------------------------------
    """

    def init_train(self):
        pass

    def load(self):
        pass

    def save(self, label):
        pass

    def define_loss(self):
        pass

    def define_optimizer(self):
        pass

    def define_scheduler(self):
        pass

    """
    # ----------------------------------------
    # Optimization during training with data
    # Testing/evaluation
    # ----------------------------------------
    """

    def feed_data(self, data):
        pass

    def optimize_parameters(self):
        pass

    def current_visuals(self):
        pass

    def current_losses(self):
        pass

    def update_learning_rate(self, n):
        for scheduler in self.schedulers:
            scheduler.step(n)

    def current_learning_rate(self):
        return self.schedulers[0].get_lr()[0]

    def requires_grad(self, model, flag=True):
        for p in model.parameters():
            p.requires_grad = flag

    """
    # ----------------------------------------
    # Information of net
    # ----------------------------------------
    """

    def print_network(self):
        pass

    def info_network(self):
        pass

    def print_params(self):
        pass

    def info_params(self):
        pass

    def get_bare_model(self, network):
        """Get bare model, especially under wrapping with
        DistributedDataParallel or DataParallel.
        """
        if isinstance(network, (DataParallel, DistributedDataParallel)):
            network = network.module
        return network

    def model_to_device(self, network):
        """Model to device. It also warps models with DistributedDataParallel
        or DataParallel.
        Args:
            network (nn.Module)
        """
        network = network.to(self.device)
        if self.opt['dist']:
            find_unused_parameters = self.opt.get('find_unused_parameters', True)
            use_static_graph = self.opt.get('use_static_graph', False)
            network = DistributedDataParallel(network, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters)
            if use_static_graph:
                print('Using static graph. Make sure that "unused parameters" will not change during training loop.')
                network._set_static_graph()
        else:
            network = DataParallel(network)
        return network

    # ----------------------------------------
    # network name and number of parameters
    # ----------------------------------------
    def describe_network(self, network):
        network = self.get_bare_model(network)
        msg = '\n'
        msg += 'Networks name: {}'.format(network.__class__.__name__) + '\n'
        msg += 'Params number: {}'.format(sum(map(lambda x: x.numel(), network.parameters()))) + '\n'
        msg += 'Net structure:\n{}'.format(str(network)) + '\n'
        return msg

    # ----------------------------------------
    # parameters description
    # ----------------------------------------
    def describe_params(self, network):
        network = self.get_bare_model(network)
        msg = '\n'
        msg += ' | {:^6s} | {:^6s} | {:^6s} | {:^6s} || {:<20s}'.format('mean', 'min', 'max', 'std', 'shape', 'param_name') + '\n'
        for name, param in network.state_dict().items():
            if not 'num_batches_tracked' in name:
                v = param.data.clone().float()
                msg += ' | {:>6.3f} | {:>6.3f} | {:>6.3f} | {:>6.3f} | {} || {:s}'.format(v.mean(), v.min(), v.max(), v.std(), v.shape, name) + '\n'
        return msg

    """
    # ----------------------------------------
    # Save prameters
    # Load prameters
    # ----------------------------------------
    """

    # ----------------------------------------
    # save the state_dict of the network
    # ----------------------------------------
    def save_network(self, save_dir, network, network_label, iter_label):
        save_filename = '{}_{}.pth'.format(iter_label, network_label)
        save_path = os.path.join(save_dir, save_filename)
        network = self.get_bare_model(network)
        state_dict = network.state_dict()
        for key, param in state_dict.items():
            state_dict[key] = param.cpu()
        torch.save(state_dict, save_path)

    # ----------------------------------------
    # load the state_dict of the network
    # ----------------------------------------
    def load_network(self, load_path, network, strict=True, param_key='params'):
        network = self.get_bare_model(network)
        if strict:
            state_dict = torch.load(load_path)
            if param_key in state_dict.keys():
                state_dict = state_dict[param_key]
            network.load_state_dict(state_dict, strict=strict)
        else:
            state_dict_old = torch.load(load_path)
            if param_key in state_dict_old.keys():
                state_dict_old = state_dict_old[param_key]
            state_dict = network.state_dict()
            for ((key_old, param_old),(key, param)) in zip(state_dict_old.items(), state_dict.items()):
                state_dict[key] = param_old
            network.load_state_dict(state_dict, strict=True)
            del state_dict_old, state_dict

    # ----------------------------------------
    # save the state_dict of the optimizer
    # ----------------------------------------
    def save_optimizer(self, save_dir, optimizer, optimizer_label, iter_label):
        save_filename = '{}_{}.pth'.format(iter_label, optimizer_label)
        save_path = os.path.join(save_dir, save_filename)
        torch.save(optimizer.state_dict(), save_path)

    # ----------------------------------------
    # load the state_dict of the optimizer
    # ----------------------------------------
    def load_optimizer(self, load_path, optimizer):
        optimizer.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage.cuda(torch.cuda.current_device())))

    def update_E(self, decay=0.999):
        netG = self.get_bare_model(self.netG)
        netG_params = dict(netG.named_parameters())
        netE_params = dict(self.netE.named_parameters())
        for k in netG_params.keys():
            netE_params[k].data.mul_(decay).add_(netG_params[k].data, alpha=1-decay)

    """
    # ----------------------------------------
    # Merge Batch Normalization for training
    # Merge Batch Normalization for testing
    # ----------------------------------------
    """

    # ----------------------------------------
    # merge bn during training
    # ----------------------------------------
    def merge_bnorm_train(self):
        merge_bn(self.netG)
        tidy_sequential(self.netG)
        self.define_optimizer()
        self.define_scheduler()

    # ----------------------------------------
    # merge bn before testing
    # ----------------------------------------
    def merge_bnorm_test(self):
        merge_bn(self.netG)
        tidy_sequential(self.netG)