File size: 6,843 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
https://github.com/yangxy/GPEN
@inproceedings{Yang2021GPEN,
    title={GAN Prior Embedded Network for Blind Face Restoration in the Wild},
    author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021}
}
© Alibaba, 2021. For academic and non-commercial use only.
==================================================
slightly modified by Kai Zhang (2021-06-03)
https://github.com/cszn/KAIR

How to run:

step 1: Download <RetinaFace-R50.pth> model and <GPEN-512.pth> model and put them into `model_zoo`.
RetinaFace-R50.pth: https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/RetinaFace-R50.pth
GPEN-512.pth: https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/robin/models/GPEN-512.pth

step 2: Install ninja by `pip install ninja`; set <inputdir> for your own testing images

step 3: `python main_test_face_enhancement.py`
==================================================
'''


import os
import cv2
import glob
import numpy as np
import torch

from utils.utils_alignfaces import warp_and_crop_face, get_reference_facial_points
from utils import utils_image as util 

from retinaface.retinaface_detection import RetinaFaceDetection
from models.network_faceenhancer import FullGenerator as enhancer_net


class faceenhancer(object):
    def __init__(self, model_path='model_zoo/GPEN-512.pth', size=512, channel_multiplier=2):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model_path = model_path
        self.size = size
        self.model = enhancer_net(self.size, 512, 8, channel_multiplier).to(self.device)
        self.model.load_state_dict(torch.load(self.model_path))
        self.model.eval()

    def process(self, img):
        '''
        img: uint8 RGB image, (W, H, 3)
        out: uint8 RGB image, (W, H, 3)
        '''
        img = cv2.resize(img, (self.size, self.size))
        img = util.uint2tensor4(img)
        img = (img - 0.5) / 0.5
        img = img.to(self.device)

        with torch.no_grad():
            out, __ = self.model(img)

        out = util.tensor2uint(out * 0.5 + 0.5)
        return out


class faceenhancer_with_detection_alignment(object):
    def __init__(self, model_path, size=512, channel_multiplier=2):
        self.facedetector = RetinaFaceDetection('model_zoo/RetinaFace-R50.pth')
        self.faceenhancer = faceenhancer(model_path, size, channel_multiplier)
        self.size = size
        self.threshold = 0.9

        self.mask = np.zeros((512, 512), np.float32)
        cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA)
        self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
        self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)

        self.kernel = np.array((
                [0.0625, 0.125, 0.0625],
                [0.125, 0.25, 0.125],
                [0.0625, 0.125, 0.0625]), dtype="float32")

        # get the reference 5 landmarks position in the crop settings
        default_square = True
        inner_padding_factor = 0.25
        outer_padding = (0, 0)
        self.reference_5pts = get_reference_facial_points(
                (self.size, self.size), inner_padding_factor, outer_padding, default_square)

    def process(self, img):
        '''
        img: uint8 RGB image, (W, H, 3)
        img, orig_faces, enhanced_faces: uint8 RGB image / cropped face images
        '''
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        facebs, landms = self.facedetector.detect(img)

        orig_faces, enhanced_faces = [], []
        height, width = img.shape[:2]
        full_mask = np.zeros((height, width), dtype=np.float32)
        full_img = np.zeros(img.shape, dtype=np.uint8)

        for i, (faceb, facial5points) in enumerate(zip(facebs, landms)):
            if faceb[4]<self.threshold: continue
            fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0])

            facial5points = np.reshape(facial5points, (2, 5))

            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size))
            # Enhance the face image!
            
            ef = self.faceenhancer.process(of)

            orig_faces.append(of)
            enhanced_faces.append(ef)
            tmp_mask = self.mask
            tmp_mask = cv2.resize(tmp_mask, ef.shape[:2])
            tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3)
            if min(fh, fw) < 100: # Gaussian filter for small face
                ef = cv2.filter2D(ef, -1, self.kernel)

            tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3)

            mask = tmp_mask - full_mask
            full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)]
            full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)]

        full_mask = full_mask[:, :, np.newaxis]
        img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask)

        return img, orig_faces, enhanced_faces


if __name__=='__main__':

    inputdir = os.path.join('testsets', 'real_faces')
    outdir = os.path.join('testsets', 'real_faces_results')
    os.makedirs(outdir, exist_ok=True)

    # whether use the face detection&alignment or not
    need_face_detection = True

    if need_face_detection:
        enhancer = faceenhancer_with_detection_alignment(model_path=os.path.join('model_zoo','GPEN-512.pth'), size=512, channel_multiplier=2)
    else:
        enhancer = faceenhancer(model_path=os.path.join('model_zoo','GPEN-512.pth'), size=512, channel_multiplier=2)

    for idx, img_file in enumerate(util.get_image_paths(inputdir)):
        img_name, ext = os.path.splitext(os.path.basename(img_file))
        img_L = util.imread_uint(img_file, n_channels=3)

        print('{:->4d} --> {:<s}'.format(idx+1, img_name+ext))

        img_L = cv2.resize(img_L, (0,0), fx=2, fy=2)

        if need_face_detection:
            # do the enhancement
            img_H, orig_faces, enhanced_faces = enhancer.process(img_L)

            util.imsave(np.hstack((img_L, img_H)), os.path.join(outdir, img_name+'_comparison.png'))
            util.imsave(img_H, os.path.join(outdir, img_name+'_enhanced.png'))
            for m, (ef, of) in enumerate(zip(enhanced_faces, orig_faces)):
                of = cv2.resize(of, ef.shape[:2])
                util.imsave(np.hstack((of, ef)), os.path.join(outdir, img_name+'_face%02d'%m+'.png'))
        else:
            # do the enhancement
            img_H = enhancer.process(img_L)

            util.imsave(img_H, os.path.join(outdir, img_name+'_enhanced_without_detection.png'))