Spaces:
Running
Running
File size: 3,407 Bytes
2514fb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
'''
# --------------------------------------------
# select dataset
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# --------------------------------------------
'''
def define_Dataset(dataset_opt):
dataset_type = dataset_opt['dataset_type'].lower()
if dataset_type in ['l', 'low-quality', 'input-only']:
from data.dataset_l import DatasetL as D
# -----------------------------------------
# denoising
# -----------------------------------------
elif dataset_type in ['dncnn', 'denoising']:
from data.dataset_dncnn import DatasetDnCNN as D
elif dataset_type in ['dnpatch']:
from data.dataset_dnpatch import DatasetDnPatch as D
elif dataset_type in ['ffdnet', 'denoising-noiselevel']:
from data.dataset_ffdnet import DatasetFFDNet as D
elif dataset_type in ['fdncnn', 'denoising-noiselevelmap']:
from data.dataset_fdncnn import DatasetFDnCNN as D
# -----------------------------------------
# super-resolution
# -----------------------------------------
elif dataset_type in ['sr', 'super-resolution']:
from data.dataset_sr import DatasetSR as D
elif dataset_type in ['srmd']:
from data.dataset_srmd import DatasetSRMD as D
elif dataset_type in ['dpsr', 'dnsr']:
from data.dataset_dpsr import DatasetDPSR as D
elif dataset_type in ['usrnet', 'usrgan']:
from data.dataset_usrnet import DatasetUSRNet as D
elif dataset_type in ['bsrnet', 'bsrgan', 'blindsr']:
from data.dataset_blindsr import DatasetBlindSR as D
# -------------------------------------------------
# JPEG compression artifact reduction (deblocking)
# -------------------------------------------------
elif dataset_type in ['jpeg']:
from data.dataset_jpeg import DatasetJPEG as D
# -----------------------------------------
# video restoration
# -----------------------------------------
elif dataset_type in ['videorecurrenttraindataset']:
from data.dataset_video_train import VideoRecurrentTrainDataset as D
elif dataset_type in ['videorecurrenttrainnonblinddenoisingdataset']:
from data.dataset_video_train import VideoRecurrentTrainNonblindDenoisingDataset as D
elif dataset_type in ['videorecurrenttrainvimeodataset']:
from data.dataset_video_train import VideoRecurrentTrainVimeoDataset as D
elif dataset_type in ['videorecurrenttestdataset']:
from data.dataset_video_test import VideoRecurrentTestDataset as D
elif dataset_type in ['singlevideorecurrenttestdataset']:
from data.dataset_video_test import SingleVideoRecurrentTestDataset as D
elif dataset_type in ['videotestvimeo90kdataset']:
from data.dataset_video_test import VideoTestVimeo90KDataset as D
# -----------------------------------------
# common
# -----------------------------------------
elif dataset_type in ['plain']:
from data.dataset_plain import DatasetPlain as D
elif dataset_type in ['plainpatch']:
from data.dataset_plainpatch import DatasetPlainPatch as D
else:
raise NotImplementedError('Dataset [{:s}] is not found.'.format(dataset_type))
dataset = D(dataset_opt)
print('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__, dataset_opt['name']))
return dataset
|