File size: 5,163 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import random

import numpy as np
import torch
import torch.utils.data as data
import utils.utils_image as util
from utils import utils_deblur
from utils import utils_sisr
import os

from scipy import ndimage
from scipy.io import loadmat
# import hdf5storage


class DatasetUSRNet(data.Dataset):
    '''

    # -----------------------------------------

    # Get L/k/sf/sigma for USRNet.

    # Only "paths_H" and kernel is needed, synthesize L on-the-fly.

    # -----------------------------------------

    '''
    def __init__(self, opt):
        super(DatasetUSRNet, self).__init__()
        self.opt = opt
        self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
        self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96
        self.sigma_max = self.opt['sigma_max'] if self.opt['sigma_max'] is not None else 25
        self.scales = opt['scales'] if opt['scales'] is not None else [1,2,3,4]
        self.sf_validation = opt['sf_validation'] if opt['sf_validation'] is not None else 3
        #self.kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']
        self.kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']  # for validation

        # -------------------
        # get the path of H
        # -------------------
        self.paths_H = util.get_image_paths(opt['dataroot_H'])  # return None if input is None
        self.count = 0

    def __getitem__(self, index):

        # -------------------
        # get H image
        # -------------------
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)
        L_path = H_path

        if self.opt['phase'] == 'train':

            # ---------------------------
            # 1) scale factor, ensure each batch only involves one scale factor
            # ---------------------------
            if self.count % self.opt['dataloader_batch_size'] == 0:
                # sf = random.choice([1,2,3,4])
                self.sf = random.choice(self.scales)
                # self.count = 0  # optional
            self.count += 1
            H, W, _ = img_H.shape

            # ----------------------------
            # randomly crop the patch
            # ----------------------------
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :]

            # ---------------------------
            # augmentation - flip, rotate
            # ---------------------------
            mode = np.random.randint(0, 8)
            patch_H = util.augment_img(patch_H, mode=mode)

            # ---------------------------
            # 2) kernel
            # ---------------------------
            r_value = random.randint(0, 7)
            if r_value>3:
                k = utils_deblur.blurkernel_synthesis(h=25)  # motion blur
            else:
                sf_k = random.choice(self.scales)
                k = utils_sisr.gen_kernel(scale_factor=np.array([sf_k, sf_k]))  # Gaussian blur
                mode_k = random.randint(0, 7)
                k = util.augment_img(k, mode=mode_k)

            # ---------------------------
            # 3) noise level
            # ---------------------------
            if random.randint(0, 8) == 1:
                noise_level = 0/255.0
            else:
                noise_level = np.random.randint(0, self.sigma_max)/255.0

            # ---------------------------
            # Low-quality image
            # ---------------------------
            img_L = ndimage.filters.convolve(patch_H, np.expand_dims(k, axis=2), mode='wrap')
            img_L = img_L[0::self.sf, 0::self.sf, ...]
            # add Gaussian noise
            img_L = util.uint2single(img_L) + np.random.normal(0, noise_level, img_L.shape)
            img_H = patch_H

        else:

            k = self.kernels[0, 0].astype(np.float64)  # validation kernel
            k /= np.sum(k)
            noise_level = 0./255.0  # validation noise level

            # ------------------------------------
            # modcrop
            # ------------------------------------
            img_H = util.modcrop(img_H, self.sf_validation)

            img_L = ndimage.filters.convolve(img_H, np.expand_dims(k, axis=2), mode='wrap')  # blur
            img_L = img_L[0::self.sf_validation, 0::self.sf_validation, ...]  # downsampling
            img_L = util.uint2single(img_L) + np.random.normal(0, noise_level, img_L.shape)
            self.sf = self.sf_validation

        k = util.single2tensor3(np.expand_dims(np.float32(k), axis=2))
        img_H, img_L = util.uint2tensor3(img_H), util.single2tensor3(img_L)
        noise_level = torch.FloatTensor([noise_level]).view([1,1,1])

        return {'L': img_L, 'H': img_H, 'k': k, 'sigma': noise_level, 'sf': self.sf, 'L_path': L_path, 'H_path': H_path}

    def __len__(self):
        return len(self.paths_H)