File size: 4,808 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import random
import numpy as np
import torch
import torch.utils.data as data
import utils.utils_image as util


class DatasetDnPatch(data.Dataset):
    """
    # -----------------------------------------
    # Get L/H for denosing on AWGN with fixed sigma.
    # ****Get all H patches first****
    # Only dataroot_H is needed.
    # -----------------------------------------
    # e.g., DnCNN with BSD400
    # -----------------------------------------
    """

    def __init__(self, opt):
        super(DatasetDnPatch, self).__init__()
        print('Get L/H for denosing on AWGN with fixed sigma. Only dataroot_H is needed.')
        self.opt = opt
        self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
        self.patch_size = opt['H_size'] if opt['H_size'] else 64

        self.sigma = opt['sigma'] if opt['sigma'] else 25
        self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else self.sigma

        self.num_patches_per_image = opt['num_patches_per_image'] if opt['num_patches_per_image'] else 40
        self.num_sampled = opt['num_sampled'] if opt['num_sampled'] else 3000

        # ------------------------------------
        # get paths of H
        # ------------------------------------
        self.paths_H = util.get_image_paths(opt['dataroot_H'])
        assert self.paths_H, 'Error: H path is empty.'

        # ------------------------------------
        # number of sampled H images
        # ------------------------------------
        self.num_sampled = min(self.num_sampled, len(self.paths_H))

        # ------------------------------------
        # reserve space with zeros
        # ------------------------------------
        self.total_patches = self.num_sampled * self.num_patches_per_image
        self.H_data = np.zeros([self.total_patches, self.patch_size, self.patch_size, self.n_channels], dtype=np.uint8)

        # ------------------------------------
        # update H patches
        # ------------------------------------
        self.update_data()

    def update_data(self):
        """
        # ------------------------------------
        # update whole H patches
        # ------------------------------------
        """
        self.index_sampled = random.sample(range(0, len(self.paths_H), 1), self.num_sampled)
        n_count = 0

        for i in range(len(self.index_sampled)):
            H_patches = self.get_patches(self.index_sampled[i])
            for H_patch in H_patches:
                self.H_data[n_count,:,:,:] = H_patch
                n_count += 1

        print('Training data updated! Total number of patches is:  %5.2f X %5.2f = %5.2f\n' % (len(self.H_data)//128, 128, len(self.H_data)))

    def get_patches(self, index):
        """
        # ------------------------------------
        # get H patches from an H image
        # ------------------------------------
        """
        H_path = self.paths_H[index]
        img_H = util.imread_uint(H_path, self.n_channels)  # uint format

        H, W = img_H.shape[:2]

        H_patches = []

        num = self.num_patches_per_image
        for _ in range(num):
            rnd_h = random.randint(0, max(0, H - self.patch_size))
            rnd_w = random.randint(0, max(0, W - self.patch_size))
            H_patch = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :]
            H_patches.append(H_patch)

        return H_patches

    def __getitem__(self, index):

        H_path = 'toy.png'
        if self.opt['phase'] == 'train':

            patch_H = self.H_data[index]

            # --------------------------------
            # augmentation - flip and/or rotate
            # --------------------------------
            mode = random.randint(0, 7)
            patch_H = util.augment_img(patch_H, mode=mode)

            patch_H = util.uint2tensor3(patch_H)
            patch_L = patch_H.clone()

            # ------------------------------------
            # add noise
            # ------------------------------------
            noise = torch.randn(patch_L.size()).mul_(self.sigma/255.0)
            patch_L.add_(noise)

        else:

            H_path = self.paths_H[index]
            img_H = util.imread_uint(H_path, self.n_channels)
            img_H = util.uint2single(img_H)
            img_L = np.copy(img_H)

            # ------------------------------------
            # add noise
            # ------------------------------------
            np.random.seed(seed=0)
            img_L += np.random.normal(0, self.sigma_test/255.0, img_L.shape)
            patch_L, patch_H = util.single2tensor3(img_L), util.single2tensor3(img_H)

        L_path = H_path
        return {'L': patch_L, 'H': patch_H, 'L_path': L_path, 'H_path': H_path}

    def __len__(self):
        return len(self.H_data)