mariusjabami commited on
Commit
9917b41
verified
1 Parent(s): a474012

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -20
app.py CHANGED
@@ -6,9 +6,12 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStream
6
  import torch
7
 
8
  # Carregar modelo local
9
- model_id = "lambdaindie/lambda-1v-1B" # Substitua se quiser
10
  tokenizer = AutoTokenizer.from_pretrained(model_id)
11
- model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
 
 
 
12
  model.to("cuda" if torch.cuda.is_available() else "cpu")
13
  model.eval()
14
 
@@ -45,10 +48,7 @@ textarea, input, button, select {
45
 
46
  theme = gr.themes.Base(
47
  primary_hue="gray",
48
- font=[
49
- gr.themes.GoogleFont("JetBrains Mono"),
50
- "monospace"
51
- ]
52
  ).set(
53
  body_background_fill="#111",
54
  body_text_color="#e0e0e0",
@@ -59,21 +59,21 @@ theme = gr.themes.Base(
59
  block_title_text_color="#fff"
60
  )
61
 
62
- # Flag para parar
63
  stop_signal = False
64
 
65
  def stop_stream():
66
  global stop_signal
67
  stop_signal = True
68
 
69
- def respond(message, history, system_message, max_tokens, temperature, top_p):
70
  global stop_signal
71
  stop_signal = False
72
 
73
- # Constru莽茫o do prompt
74
  prompt = ""
75
  if system_message:
76
- prompt += f"{system_message}\n\n"
77
 
78
  for msg in history:
79
  role = msg["role"]
@@ -83,11 +83,11 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
83
  elif role == "assistant":
84
  prompt += f"Assistant: {content}\n"
85
 
86
- prompt += f"User: {message}\nAssistant:"
87
 
88
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
89
-
90
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
 
91
  generation_kwargs = dict(
92
  **inputs,
93
  streamer=streamer,
@@ -107,14 +107,18 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
107
  if stop_signal:
108
  break
109
  output += token
110
- yield {"role": "assistant", "content": output}
111
 
112
  end = time.time()
113
- yield {"role": "system", "content": f"Pensou por {end - start:.1f} segundos"}
 
 
 
114
 
115
  # Interface
116
  with gr.Blocks(css=css, theme=theme) as app:
117
  chatbot = gr.Chatbot(label="位", type="messages")
 
118
 
119
  with gr.Row():
120
  msg = gr.Textbox(label="Mensagem")
@@ -127,16 +131,14 @@ with gr.Blocks(css=css, theme=theme) as app:
127
  temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
128
  top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
129
 
130
- state = gr.State([])
131
-
132
- def user_message_submit(user_msg, chat_history):
133
  if user_msg:
134
  chat_history = chat_history + [{"role": "user", "content": user_msg}]
135
  return "", chat_history
136
 
137
- send_btn.click(fn=user_message_submit, inputs=[msg, state], outputs=[msg, state])\
138
- .then(fn=respond, inputs=[msg, state, system_message, max_tokens, temperature, top_p], outputs=chatbot)
139
 
140
  stop_btn.click(fn=stop_stream, inputs=[], outputs=[])
141
 
142
- app.launch(share=True)
 
6
  import torch
7
 
8
  # Carregar modelo local
9
+ model_id = "lambdaindie/lambda-1v-1B"
10
  tokenizer = AutoTokenizer.from_pretrained(model_id)
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ model_id,
13
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
14
+ )
15
  model.to("cuda" if torch.cuda.is_available() else "cpu")
16
  model.eval()
17
 
 
48
 
49
  theme = gr.themes.Base(
50
  primary_hue="gray",
51
+ font=[gr.themes.GoogleFont("JetBrains Mono"), "monospace"]
 
 
 
52
  ).set(
53
  body_background_fill="#111",
54
  body_text_color="#e0e0e0",
 
59
  block_title_text_color="#fff"
60
  )
61
 
62
+ # Flag de parada
63
  stop_signal = False
64
 
65
  def stop_stream():
66
  global stop_signal
67
  stop_signal = True
68
 
69
+ def respond(history, system_message, max_tokens, temperature, top_p):
70
  global stop_signal
71
  stop_signal = False
72
 
73
+ # Construir prompt
74
  prompt = ""
75
  if system_message:
76
+ prompt += system_message + "\n\n"
77
 
78
  for msg in history:
79
  role = msg["role"]
 
83
  elif role == "assistant":
84
  prompt += f"Assistant: {content}\n"
85
 
86
+ prompt += "Assistant:"
87
 
88
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
 
89
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
90
+
91
  generation_kwargs = dict(
92
  **inputs,
93
  streamer=streamer,
 
107
  if stop_signal:
108
  break
109
  output += token
110
+ yield history + [{"role": "assistant", "content": output}]
111
 
112
  end = time.time()
113
+ yield history + [
114
+ {"role": "assistant", "content": output},
115
+ {"role": "system", "content": f"Pensou por {end - start:.1f} segundos"}
116
+ ]
117
 
118
  # Interface
119
  with gr.Blocks(css=css, theme=theme) as app:
120
  chatbot = gr.Chatbot(label="位", type="messages")
121
+ state = gr.State([])
122
 
123
  with gr.Row():
124
  msg = gr.Textbox(label="Mensagem")
 
131
  temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
132
  top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
133
 
134
+ def handle_user_msg(user_msg, chat_history):
 
 
135
  if user_msg:
136
  chat_history = chat_history + [{"role": "user", "content": user_msg}]
137
  return "", chat_history
138
 
139
+ send_btn.click(fn=handle_user_msg, inputs=[msg, state], outputs=[msg, state])\
140
+ .then(fn=respond, inputs=[state, system_message, max_tokens, temperature, top_p], outputs=[chatbot, state])
141
 
142
  stop_btn.click(fn=stop_stream, inputs=[], outputs=[])
143
 
144
+ app.launch(share=True