Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
import threading
|
|
|
4 |
import gradio as gr
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
6 |
import torch
|
7 |
|
8 |
-
#
|
9 |
model_id = "lambdaindie/lambda-1v-1B"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
model_id,
|
13 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
)
|
15 |
-
|
|
|
16 |
model.eval()
|
17 |
|
18 |
-
#
|
19 |
css = """
|
20 |
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
21 |
* {
|
@@ -30,115 +30,78 @@ textarea, input, button, select {
|
|
30 |
color: #e0e0e0 !important;
|
31 |
border: 1px solid #444 !important;
|
32 |
}
|
33 |
-
.markdown-think {
|
34 |
-
background-color: #1e1e1e;
|
35 |
-
border-left: 4px solid #555;
|
36 |
-
padding: 10px;
|
37 |
-
margin-bottom: 8px;
|
38 |
-
font-style: italic;
|
39 |
-
white-space: pre-wrap;
|
40 |
-
animation: pulse 1.5s infinite ease-in-out;
|
41 |
-
}
|
42 |
-
@keyframes pulse {
|
43 |
-
0% { opacity: 0.6; }
|
44 |
-
50% { opacity: 1.0; }
|
45 |
-
100% { opacity: 0.6; }
|
46 |
-
}
|
47 |
"""
|
48 |
|
49 |
-
|
50 |
-
primary_hue="gray",
|
51 |
-
font=[gr.themes.GoogleFont("JetBrains Mono"), "monospace"]
|
52 |
-
).set(
|
53 |
-
body_background_fill="#111",
|
54 |
-
body_text_color="#e0e0e0",
|
55 |
-
button_primary_background_fill="#333",
|
56 |
-
button_primary_text_color="#e0e0e0",
|
57 |
-
input_background_fill="#222",
|
58 |
-
input_border_color="#444",
|
59 |
-
block_title_text_color="#fff"
|
60 |
-
)
|
61 |
-
|
62 |
-
# Flag de parada
|
63 |
stop_signal = False
|
64 |
|
65 |
def stop_stream():
|
66 |
global stop_signal
|
67 |
stop_signal = True
|
68 |
|
69 |
-
|
|
|
70 |
global stop_signal
|
71 |
stop_signal = False
|
72 |
|
73 |
-
|
74 |
-
prompt =
|
75 |
-
if system_message:
|
76 |
-
prompt += system_message + "\n\n"
|
77 |
-
|
78 |
-
for msg in history:
|
79 |
-
role = msg["role"]
|
80 |
-
content = msg["content"]
|
81 |
-
if role == "user":
|
82 |
-
prompt += f"User: {content}\n"
|
83 |
-
elif role == "assistant":
|
84 |
-
prompt += f"Assistant: {content}\n"
|
85 |
-
|
86 |
-
prompt += "Assistant:"
|
87 |
|
88 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
89 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
90 |
|
91 |
generation_kwargs = dict(
|
92 |
-
|
|
|
93 |
streamer=streamer,
|
94 |
max_new_tokens=max_tokens,
|
95 |
temperature=temperature,
|
96 |
top_p=top_p,
|
97 |
do_sample=True,
|
|
|
98 |
)
|
99 |
|
100 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
101 |
thread.start()
|
102 |
|
103 |
-
|
104 |
-
start = time.time()
|
105 |
-
|
106 |
for token in streamer:
|
107 |
if stop_signal:
|
108 |
break
|
109 |
-
|
110 |
-
yield
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
max_tokens = gr.Slider(64, 2048, value=256, step=1, label="Max Tokens")
|
131 |
-
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
132 |
-
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
133 |
-
|
134 |
-
def handle_user_msg(user_msg, chat_history):
|
135 |
-
if user_msg:
|
136 |
-
chat_history = chat_history + [{"role": "user", "content": user_msg}]
|
137 |
return "", chat_history
|
138 |
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
stop_btn.click(
|
143 |
|
144 |
app.launch(share=True)
|
|
|
|
|
|
|
1 |
import threading
|
2 |
+
import time
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
5 |
import torch
|
6 |
|
7 |
+
# Configura莽茫o do modelo
|
8 |
model_id = "lambdaindie/lambda-1v-1B"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
model_id,
|
12 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
13 |
)
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
model.to(device)
|
16 |
model.eval()
|
17 |
|
18 |
+
# CSS visual
|
19 |
css = """
|
20 |
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');
|
21 |
* {
|
|
|
30 |
color: #e0e0e0 !important;
|
31 |
border: 1px solid #444 !important;
|
32 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"""
|
34 |
|
35 |
+
# Controle global de parada
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
stop_signal = False
|
37 |
|
38 |
def stop_stream():
|
39 |
global stop_signal
|
40 |
stop_signal = True
|
41 |
|
42 |
+
# Gera莽茫o com streaming
|
43 |
+
def generate_response(message, max_tokens, temperature, top_p):
|
44 |
global stop_signal
|
45 |
stop_signal = False
|
46 |
|
47 |
+
prompt = f"Question: {message}\nThinking:"
|
48 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
51 |
|
52 |
generation_kwargs = dict(
|
53 |
+
input_ids=inputs["input_ids"],
|
54 |
+
attention_mask=inputs["attention_mask"],
|
55 |
streamer=streamer,
|
56 |
max_new_tokens=max_tokens,
|
57 |
temperature=temperature,
|
58 |
top_p=top_p,
|
59 |
do_sample=True,
|
60 |
+
eos_token_id=tokenizer.eos_token_id
|
61 |
)
|
62 |
|
63 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
64 |
thread.start()
|
65 |
|
66 |
+
full_text = ""
|
|
|
|
|
67 |
for token in streamer:
|
68 |
if stop_signal:
|
69 |
break
|
70 |
+
full_text += token
|
71 |
+
yield full_text.strip()
|
72 |
+
|
73 |
+
if stop_signal:
|
74 |
+
return
|
75 |
+
|
76 |
+
# Interface Gradio
|
77 |
+
with gr.Blocks(css=css) as app:
|
78 |
+
chatbot = gr.Chatbot(label="位", elem_id="chatbot")
|
79 |
+
msg = gr.Textbox(label="Mensagem", placeholder="Digite aqui...", lines=2)
|
80 |
+
send_btn = gr.Button("Enviar")
|
81 |
+
stop_btn = gr.Button("Parar")
|
82 |
+
|
83 |
+
max_tokens = gr.Slider(64, 512, value=128, step=1, label="Max Tokens")
|
84 |
+
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
|
85 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
86 |
+
|
87 |
+
state = gr.State([]) # hist贸rico apenas visual
|
88 |
+
|
89 |
+
def update_chat(message, chat_history):
|
90 |
+
chat_history = chat_history + [(message, None)] # adiciona s贸 a pergunta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
return "", chat_history
|
92 |
|
93 |
+
def generate_full(chat_history, max_tokens, temperature, top_p):
|
94 |
+
message = chat_history[-1][0] # 煤ltima mensagem enviada
|
95 |
+
visual_history = chat_history[:-1] # remove temporariamente a entrada pendente
|
96 |
+
|
97 |
+
full_response = ""
|
98 |
+
for chunk in generate_response(message, max_tokens, temperature, top_p):
|
99 |
+
full_response = chunk
|
100 |
+
yield visual_history + [(message, full_response)], visual_history + [(message, full_response)]
|
101 |
+
|
102 |
+
send_btn.click(update_chat, inputs=[msg, state], outputs=[msg, state]) \
|
103 |
+
.then(generate_full, inputs=[state, max_tokens, temperature, top_p], outputs=[chatbot, state])
|
104 |
|
105 |
+
stop_btn.click(stop_stream, inputs=[], outputs=[])
|
106 |
|
107 |
app.launch(share=True)
|