lamb / app.py
mariusjabami's picture
Update app.py
b77cd37 verified
raw
history blame
1.18 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch
# Carrega config do adaptador
config = PeftConfig.from_pretrained("lambdaindie/lambda-1v-1B")
# Carrega modelo base + LoRA
base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(base_model, "lambdaindie/lambda-1v-1B")
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Envia pra CPU
device = torch.device("cpu")
model.to(device)
def responder(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=0.8,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
iface = gr.Interface(fn=responder,
inputs=gr.Textbox(lines=2, placeholder="Escreve algo..."),
outputs="text",
title="Lambda-1v-1B (LoRA)",
description="Modelo LoRA fine-tuned por Marius Jabami.")
iface.launch()