from transformers import pipeline, set_seed from random import randint import gradio as gr generator = pipeline('text-generation', model='gpt2') def gpt2(string, max_length, amount): set_seed(randint(randint(1000,10000),randint(50000,300000))) return '\n\n'.join([d['generated_text'] for d in generator(string, max_length=max_length, num_return_sequences=amount)) max_length_slider = gr.inputs.Slider(minimum=10, maximum=500, step=1, default=100, label='max_length') amount_slider = gr.inputs.Slider(minimum=1, maximum=5, step=1, default=1, label='num_return_sequences (Amount)') iface = gr.Interface(fn=gpt2, inputs=['text', max_length_slider], outputs='text') iface.launch()