Spaces:
Sleeping
Sleeping
import gradio as gr | |
import PIL.Image as Image | |
from ultralytics import ASSETS, YOLO | |
model = YOLO("yolo12x.pt") | |
def predict_image(img, conf_threshold, iou_threshold): | |
"""Predicts persons and cars in an image and returns the image with detections and counts.""" | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
classes=[0, 2] # 0 for person, 2 for car | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
# Count persons and cars separately | |
person_count = 0 | |
car_count = 0 | |
if results[0].boxes is not None: | |
for box in results[0].boxes: | |
class_id = int(box.cls[0]) | |
if class_id == 0: # person | |
person_count += 1 | |
elif class_id == 2: # car | |
car_count += 1 | |
total_count = person_count + car_count | |
count_text = f"Persons: {person_count} | Cars: {car_count} | Total: {total_count}" | |
return im, count_text | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Result"), | |
gr.Textbox(label="Detection Count") | |
], | |
title="Person and Car Detection", | |
description="Upload images to detect persons and cars with individual counts", | |
) | |
if __name__ == "__main__": | |
iface.launch() |