Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
7 |
|
8 |
def summarize_text(text):
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
12 |
return summary
|
13 |
|
|
|
14 |
iface = gr.Interface(
|
15 |
fn=summarize_text,
|
16 |
inputs="text",
|
17 |
outputs="text",
|
18 |
-
title="
|
19 |
-
description="Enter text to get a summary using
|
20 |
)
|
21 |
|
22 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import LEDTokenizer, LEDForConditionalGeneration
|
3 |
|
4 |
+
# Use Longformer Encoder-Decoder (LED) model
|
5 |
+
model_name = "allenai/led-large-16384"
|
6 |
+
tokenizer = LEDTokenizer.from_pretrained(model_name)
|
7 |
+
model = LEDForConditionalGeneration.from_pretrained(model_name)
|
8 |
|
9 |
def summarize_text(text):
|
10 |
+
# Tokenize input with truncation to fit within 16,384 tokens
|
11 |
+
inputs = tokenizer([text], max_length=16384, return_tensors="pt", truncation=True)
|
12 |
+
|
13 |
+
# Generate summary with adjusted parameters
|
14 |
+
summary_ids = model.generate(
|
15 |
+
inputs["input_ids"],
|
16 |
+
num_beams=4,
|
17 |
+
max_length=512, # Can be adjusted based on summary size needs
|
18 |
+
min_length=100,
|
19 |
+
early_stopping=True
|
20 |
+
)
|
21 |
+
|
22 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
23 |
return summary
|
24 |
|
25 |
+
# Gradio Interface
|
26 |
iface = gr.Interface(
|
27 |
fn=summarize_text,
|
28 |
inputs="text",
|
29 |
outputs="text",
|
30 |
+
title="Longformer Summarizer",
|
31 |
+
description="Enter text to get a summary using the Longformer Encoder-Decoder."
|
32 |
)
|
33 |
|
34 |
if __name__ == "__main__":
|