Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# model_id = "openai/whisper-large-v3" | |
# model_id = "MothersTongue/mother_tongue_model" | |
model_id = "MothersTongue/mother_tongue_model_v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") | |
sample = dataset[0]["audio"] | |
def get_transcription(file: str): | |
result = pipe(file, generate_kwargs={"language": "shona"}) | |
return result["text"] | |