File size: 29,122 Bytes
b3660df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Part of the code is from https://github.com/m-bain/frozen-in-time/blob/main/model/video_transformer.py
# Modified by Yue Zhao
# The original code is under MIT License

"""
Implementations of Video Transformers in PyTorch
A PyTorch implementation of space-time transformer as described in
'Frozen in Time: A Joint Image and Video Encoder for End-to-End Retrieval' - https://arxiv.org/abs/2104.00650
A PyTorch implementation of timesformer as described in
'Is Space-Time Attention All You Need for Video Understanding?' - https://arxiv.org/abs/2102.05095
Acknowledgments:
- This code builds on Ross Wightman's vision_transformer code in pytorch-image-models:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
- It is also inspired by lucidrains timesformer implementation:
https://github.com/lucidrains/TimeSformer-pytorch
Hacked together by Max Bain
"""

from collections import OrderedDict, defaultdict
from functools import partial, reduce
import operator
import copy

import torch
import torch.utils.checkpoint as checkpoint
from einops import rearrange, repeat
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from torch import einsum, nn
import torch.nn.functional as F
import pdb

from lavila.models.prompt_tuning import VisualPromptLearner, CMM


def attn(q, k, v):
    sim = einsum('b i d, b j d -> b i j', q, k)
    attn = sim.softmax(dim=-1)
    out = einsum('b i j, b j d -> b i d', attn, v)
    return out


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class VideoPatchEmbed(nn.Module):
    """ Video to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
                 num_frames=8, ln_pre=False):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * num_frames
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.num_frames = num_frames
        self.embed_dim = embed_dim
        # ln_pre is inserted to be compatible with CLIP-style model
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=not ln_pre)

    def forward(self, x):
        B, F, C, H, W = x.shape
        assert F <= self.num_frames
        x = x.view(-1, C, H, W)
        x = self.proj(x)
        return x


class VarAttention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
                 initialize='random', num_tokens=0):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)
        if initialize == 'zeros':
            self.qkv.weight.data.fill_(0)
            self.qkv.bias.data.fill_(0)
            # fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs
            # are multiplied by 0*0, which is hard for the model to move out of.
            self.proj.weight.data.fill_(1)
            self.proj.bias.data.fill_(0)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj_drop = nn.Dropout(proj_drop)
        self.num_tokens = num_tokens

    def forward(self, x, einops_from, einops_to, einops_dims, cfg):
        style = cfg.get('style', 'default')
        pt_att = cfg.get('pt_att', True)
        n_seg = cfg.get('n_seg', 4)
        if 'VoP' in style:
            return self.forward_VoP(x, einops_from, einops_to, einops_dims, n_seg)
        elif style == 'attall':
            return self.forward_attall(x, pt_att)
        else:
            return self.forward_features(x, einops_from, einops_to, einops_dims, pt_att)

    def forward_features(self, x, einops_from, einops_to, einops_dims, pt_att=True):
        h = self.num_heads
        num_tokens = self.num_tokens
        if self.num_tokens > 0 and not pt_att:
            prompts = x[:, 1:self.num_tokens+1, :]
            x = torch.cat((
                x[:, :1, :], # cls_token
                x[:, self.num_tokens+1:, :] # patch embeddings
            ), dim=1)
            num_tokens = 0

        # project x to q, k, v values
        q, k, v = self.qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        q *= self.scale

        # splice out CLS token at index 1 (and prompts)
        (cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:num_tokens+1], t[:, num_tokens+1:]), (q, k, v)) # Bh x () x d

        # let CLS token attend to key / values of all patches across time and space
        cls_out = attn(cls_q, k, v) # Bh x (1 + p) x d
        # rearrange across time or space
        q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims), (q_, k_, v_)) # Bh x NT x d -> Bhr x s x d

        # expand cls token keys and values across time or space and concat
        r = q_.shape[0] // cls_k.shape[0]
        cls_k, cls_v = map(lambda t: repeat(t, 'b p d -> (b r) p d', r=r), (cls_k, cls_v))  # Bhr x (1 + p) x d
        k_ = torch.cat((cls_k, k_), dim=1)
        v_ = torch.cat((cls_v, v_), dim=1)

        # attention
        out = attn(q_, k_, v_)

        # merge back time or space
        out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims) # Bh x NT x d

        # concat back the cls token
        out = torch.cat((cls_out, out), dim=1) # Bh x (1 + p + NT) x d

        # merge back the heads
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # B x (1 + p + NT) x hd
        if self.num_tokens > 0 and not pt_att:
            out = torch.cat((
                out[:, :1, :], # cls_tokens
                prompts,
                out[:, 1:, :]  # patch embeddings
            ), dim=1)
         
        # to out
        x = self.proj(out)
        x = self.proj_drop(x)
        return x

    def forward_VoP(self, x, einops_from, einops_to, einops_dims, n_seg=4):
        # position-specific prompts for spatial attention
        h = self.num_heads
        num_tokens = self.num_tokens

        # project x to q, k, v values
        q, k, v = self.qkv(x).chunk(3, dim=-1) # B x (1+p+NT) x hd
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # Bh x (1+p+NT) x d

        q *= self.scale

        # splice out CLS token at index 1 and prompts
        (cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:num_tokens+1], t[:, num_tokens+1:]), (q, k, v)) # Bh x () x d
        # let CLS token attend to key / values of all patches across time and space
        cls_out = attn(cls_q[:, :1, :], k, v) # cls token: Bh x 1 x d

        # segment prompts into s segments in time
        pstep = num_tokens // n_seg
        pseg = [range(st, en) for st, en in zip(range(1, num_tokens+1, pstep), range(pstep+1, num_tokens+2, pstep))]
        p_q, p_k, p_v = map(lambda t: rearrange(t[:, pseg, :], 'b s p d -> (b s) p d'), (cls_q, cls_k, cls_v)) # prompt query: (Bh x n_seg) x p_per_seg x d

        # segment patch embeddings into s segments in time
        q_, k_, v_ = map(lambda t: rearrange(t, 'b (f n) d -> b f n d', **einops_dims), (q_, k_, v_)) # Bh x T x N x d
        num_frames = k_.size(1)
        tstep = num_frames // n_seg
        tseg = [range(st, en) for st, en in zip(range(0, num_frames, tstep), range(tstep, num_frames+1, tstep))]
        q_, k_, v_ = map(lambda t: t[:, tseg, ...], (q_, k_, v_)) # Bh x n_seg x f_per_seg x n x d
        q_, k_, v_ = map(lambda t: rearrange(t, 'b s f n d -> (b s) (f n) d'), (q_, k_, v_)) # (Bh x n_seg) x (f_per_seg x n) x d

        # concatenate prompts and patch embeddings
        k_, v_ = map(lambda t: torch.cat((t[0], t[1]), dim=1), ((p_k, k_), (p_v, v_)))
        p_out = attn(p_q, k_, v_) # (Bh x n_seg) x p_per_seg x d
        out = attn(q_, k_, v_)    # (Bh x n_seg) x (f_per_seg x n) x d
        p_out = rearrange(p_out, '(b s) p d -> b (s p) d', s=n_seg) # Bh x p x d
        out = rearrange(out, '(b s) (f n) d -> b (s f n) d', s=n_seg, f=tstep) # Bh x NT x d

        # merge tokens
        out = torch.cat((cls_out, p_out, out), dim=1) # Bh x (1+p+NT) x d
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # B x (NT+1) x hd

        # to out
        x = self.proj(out)
        x = self.proj_drop(x)
        return x
    
    def forward_attall(self, x, pt_att=True):
        h = self.num_heads
        if self.num_tokens > 0 and not pt_att:
            prompts = x[:, 1:self.num_tokens+1, :]
            x = torch.cat((
                x[:, :1, :], # cls_token
                x[:, self.num_tokens+1:, :] # patch embeddings
            ), dim=1)

        # project x to q, k, v values
        q, k, v = self.qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        q *= self.scale

        # all tokens attend to all tokens
        out = attn(q, k, v)

        # merge back the heads
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # B x (1 + p + NT) x hd
        if self.num_tokens > 0 and not pt_att:
            out = torch.cat((
                out[:, :1, :], # cls_tokens
                prompts,
                out[:, 1:, :]  # patch embeddings
            ), dim=1)

        # to out
        x = self.proj(out)
        x = self.proj_drop(x)
        return x


class SpaceTimeBlock(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, time_init='zeros',
                 attention_style='frozen-in-time', is_tanh_gating=False, num_tokens=0, split_st=False):
        super().__init__()

        self.split_st = split_st # split spatial and temporal prompts
        if split_st:
            num_tokens = num_tokens // 2
            self.num_tokens = num_tokens # learnable prompts

        self.norm1 = norm_layer(dim)
        self.attn = VarAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, num_tokens=num_tokens)

        self.timeattn = VarAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, num_tokens=num_tokens,
            initialize=time_init)

        if is_tanh_gating:
            self.alpha_timeattn = nn.Parameter(torch.zeros([]))

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.norm3 = norm_layer(dim)

        self.attention_style = attention_style

    def forward(self, x, einops_from_space, einops_to_space, einops_from_time, einops_to_time,
                time_n, space_f, use_checkpoint=False, pt_spt=True, pt_tmp=True, style='default', n_seg=4):
        if self.split_st:
            spatial_prompts = x[:, 1:self.num_tokens+1, :]
            x = torch.cat((
                x[:, :1, :], # cls_token
                x[:, self.num_tokens+1:, :] # temporal prompts and patch embeddings
            ), dim=1)

        if use_checkpoint:
            time_output = checkpoint.checkpoint(
                self.timeattn, self.norm3(x), einops_from_time, einops_to_time, {"n": time_n}, {'pt_att': pt_tmp}
            )
        else:
            time_output = self.timeattn(self.norm3(x), einops_from_time, einops_to_time, {"n": time_n}, {'pt_att': pt_tmp})
        if hasattr(self, "alpha_timeattn"):
            time_output = torch.tanh(self.alpha_timeattn) * time_output
        time_residual = x + time_output

        if self.split_st:
            temporal_prompts = time_residual[:, 1:self.num_tokens+1, :]
            time_residual = torch.cat((
                time_residual[:, :1, :], # cls_token
                spatial_prompts,
                time_residual[:, self.num_tokens+1:, :] # patch embeddings
            ), dim=1)

        cfg = {'style': style, 'pt_att': pt_spt, 'n_seg': n_seg}
        if use_checkpoint:
            space_output = checkpoint.checkpoint(
                self.attn, self.norm1(time_residual), einops_from_space, einops_to_space, {"f": space_f}, cfg
            )
        else:
            space_output = self.attn(self.norm1(time_residual), einops_from_space,
                                     einops_to_space, {"f": space_f}, cfg)
        if self.attention_style == 'frozen-in-time':
            space_residual = x + self.drop_path(space_output)
        else:
            raise NotImplementedError

        if self.split_st:
            space_residual = torch.cat((
                space_residual[:, :self.num_tokens+1, :], # cls_token and spacial prompts
                temporal_prompts,
                space_residual[:, self.num_tokens+1:, :]  # patch embeddings
            ), dim=1)

        x = space_residual + self.drop_path(self.mlp(self.norm2(space_residual)))

        return x


class SpaceTimeTransformer(nn.Module):
    """ Vision Transformer
    A PyTorch impl of : `Space-Time Transformer` from Frozen-in-time  - by Max Bain.
        https://arxiv.org/abs/2104.00650
    Based off:
     - ViT implementation from the timm library [https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py]
    lucidrains timesformer implementation [https://github.com/lucidrains/TimeSformer-pytorch].
    Notable differences:
     - allows for variable length input frames (<= num_frames)
     - allows for variable length input resolution  (<= (img_size, img_size)) [UNTESTED]
     - different attention block mechanism
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None,
                 num_frames=8, time_init='rand', attention_style='frozen-in-time', ln_pre=False,
                 act_layer=nn.GELU, is_tanh_gating=False, tune_bias=False, prompt_cfg={}):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            hybrid_backbone (nn.Module): CNN backbone to use in-place of PatchEmbed module
            norm_layer: (nn.Module): normalization layer
            num_frames: (int) maximum number of frames expected as input
            time_init: (str) how to initialise the time attention layer, 'zeros' allows for the timesformer to start off
                        as ViT.
            attention_style: (str) how to attend to space and time.
        """
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_frames = num_frames
        self.embed_dim = embed_dim
        self.tune_bias = tune_bias
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        print("######USING ATTENTION STYLE: ", attention_style)
        self.param_list = []
        if hybrid_backbone is not None:
            raise NotImplementedError('hybrid backbone not implemented')
        else:
            self.patch_embed = VideoPatchEmbed(
                img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=num_frames, ln_pre=ln_pre)
            self.param_list += list(self.patch_embed.parameters())
        num_patches = self.patch_embed.num_patches
        self.patches_per_frame = num_patches // num_frames

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(
            torch.zeros(1, self.patches_per_frame + 1,
                        embed_dim))  # remember to take pos_embed[1:] for tiling over time
        self.temporal_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
        self.param_list += [self.cls_token, self.pos_embed, self.temporal_embed]

        if ln_pre:
            self.ln_pre = nn.LayerNorm(embed_dim)
            if self.tune_bias:
                self.param_list += [m for n, m in self.ln_pre.named_parameters() if 'bias' not in n]
            else:
                self.param_list += list(self.ln_pre.parameters())
        else:
            self.ln_pre = None

        self.pos_drop = nn.Dropout(p=drop_rate)

        # config for prompts
        self.num_tokens = prompt_cfg.get('num_tokens', 0)
        self.prompt_dim = prompt_cfg.get('prompt_dim', 768)
        self.pt_spt = prompt_cfg.pop('pt_spt', True)
        self.pt_tmp = prompt_cfg.pop('pt_tmp', True)
        self.style = prompt_cfg.pop('style', 'default')
        self.query = prompt_cfg.pop('query', 'cls')
        self.n_seg = prompt_cfg.pop('n_seg', 4)
        self.k_s = prompt_cfg.pop('K_s', depth)
        self.st = prompt_cfg.pop('st', 0)
        self.end = prompt_cfg.pop('end', depth)
        assert self.st <= self.end
        if self.style == 'default':
            print(f'Prompting {self.st}-{self.end} layer of the visual backbone')
        elif self.style == 'VoP_c' and self.k_s < depth:
            self.prompt_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
        elif self.style == 'VoP_c_pool':
            self.prompt_temp_embed = nn.Parameter(torch.zeros(1, self.n_seg, embed_dim))
            trunc_normal_(self.prompt_temp_embed, std=.02)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        blocks = []
        for i in range(depth):
            stblk_cfg = {}
            if self.num_tokens > 0:
                stblk_cfg = {'num_tokens': prompt_cfg['num_tokens'], 'split_st': prompt_cfg.get('split_st', False)}
            blocks.append(
                SpaceTimeBlock(
                    dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, time_init=time_init,
                    attention_style=attention_style, act_layer=act_layer, is_tanh_gating=is_tanh_gating, **stblk_cfg)
            )

        self.blocks = nn.ModuleList(blocks)
        self.norm = norm_layer(embed_dim)
        if self.tune_bias:
            self.param_list += reduce(operator.add, [[m for n, m in x.named_parameters() if 'bias' not in n] for x in self.blocks])
            self.param_list += [m for n, m in self.norm.named_parameters() if 'bias' not in n]
        else:
            self.param_list += reduce(operator.add, [list(x.parameters()) for x in self.blocks])
            self.param_list += list(self.norm.parameters())

        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
            if self.tune_bias:
                self.param_list += [m for n, m in self.pre_logits.named_parameters() if 'bias' not in n]
            else:
                self.param_list += list(self.pre_logits.parameters())
        else:
            self.pre_logits = nn.Identity()

        # Classifier head
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)

        # if num_frames > 1, then we perform ViT inflation and initialise time attention to zero so not necessary.
        if num_frames == 1:
            self.apply(self._init_weights)

        # einops transformations
        self.einops_from_space = 'b (f n) d'
        self.einops_to_space = '(b f) n d'
        self.einops_from_time = 'b (f n) d'
        self.einops_to_time = '(b n) f d'
         
        # freeze the backbone and only learn the prompts
        self.prompt_learner = None
        if self.num_tokens > 0:
            if 'VoP_c' in self.style:
                pool = prompt_cfg.pop('pool', {}) if 'pool' in self.style else {}
                if self.k_s > 0:
                    self.prompt_generator = CMM(self.num_tokens // self.n_seg, self.n_seg, embed_dim, self.prompt_dim, num_layer=self.k_s, \
                        shared=prompt_cfg.get('deep_shared', False), pool=pool)
                n_prompt_layer = depth - self.k_s

            else:
                n_prompt_layer = self.end - self.st

            if n_prompt_layer > 0:
                prompt_cfg['num_layers'] = n_prompt_layer
                prompt_cfg['prompt_dim'] = embed_dim
                self.prompt_learner = VisualPromptLearner(patch_size, embed_dim, **prompt_cfg)

            for p in self.param_list:
                p.requies_grad = False

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x, use_checkpoint=False, cls_at_last=True, istrain=False, gamma=1.0):
        # print(x.shape)
        b, curr_frames, channels, _, _ = x.shape
        x = self.patch_embed(x)
        x = x.flatten(2).transpose(2, 1)
        x = x.reshape(b, -1, self.patch_embed.embed_dim)

        BF = x.shape[0]
        cls_tokens = self.cls_token.expand(BF, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        # positional embed needs to be tiled for each frame (this does [1,2,3] --> [1,2,3,1,2,3]...)
        cls_embed = self.pos_embed[:, 0, :].unsqueeze(1)
        tile_pos_embed = self.pos_embed[:, 1:, :].repeat(1, self.num_frames, 1)
        # temporal embed needs to be repeated within each frame (this does [1,2,3] --> [1,1,1,2,2,2,3,3,3]...)
        tile_temporal_embed = self.temporal_embed.repeat_interleave(self.patches_per_frame, 1)
        total_pos_embed = tile_pos_embed + tile_temporal_embed
        total_pos_embed = torch.cat([cls_embed, total_pos_embed], dim=1) # 1 x (NT + 1) x D

        curr_patches = x.shape[1]
        x = x + total_pos_embed[:, :curr_patches] # B x (NT + 1) x D
        ps_loss = x.new_zeros([1])
        # incorporate prompts
        if self.num_tokens > 0:
            if 'VoP_c' in self.style and self.k_s > 0:
                ctx, ps = self.prompt_generator(x[:, 1:, :], 0, istrain=istrain, gamma=gamma)
                ps_loss += ps
                if self.prompt_generator.use_bank:
                    prompt_temp_embed = self.prompt_temp_embed.repeat_interleave(self.num_tokens // self.n_seg, 1)
                    ctx = ctx + prompt_temp_embed

            elif self.prompt_learner is not None:
                ctx, ps = self.prompt_learner(x[:, :1, :], 0, istrain=istrain, gamma=gamma)
                ps_loss += ps
                if ctx.size(0) != BF:
                    ctx = ctx.expand(BF, -1, -1)

            x = torch.cat((
                x[:, :1, :], # cls_token
                ctx,
                x[:, 1:, :]
            ), dim=1)

        if self.ln_pre is not None:
            x = self.ln_pre(x)
        x = self.pos_drop(x)
        n = self.patches_per_frame
        f = curr_frames

        for i, blk in enumerate(self.blocks):
            if self.num_tokens > 0 and i > 0 and i >= self.st and i < self.end:
                if 'VoP_c' in self.style:
                    if i < self.k_s:
                        ctx, ps = self.prompt_generator(x[:, self.num_tokens+1:, :], i, istrain=istrain, gamma=gamma)
                        ps_loss += ps
                        if self.prompt_generator.use_bank:
                            prompt_temp_embed = self.prompt_temp_embed.repeat_interleave(self.num_tokens // self.n_seg, 1)
                            ctx = ctx + prompt_temp_embed
                    else:
                        ctx, ps = self.prompt_learner(x[:, :1, :], i-self.k_s, istrain=istrain, gamma=gamma)
                        ps_loss += ps

                        if 'pool' in self.style:
                            prompt_embed = self.prompt_temp_embed.repeat_interleave(self.num_tokens // self.n_seg, 1)
                        else:
                            prompt_embed = self.prompt_embed.repeat_interleave(self.num_tokens // self.num_frames, 1)
                        ctx = ctx + prompt_embed
                        if ctx.size(0) != BF:
                            ctx = ctx.expand(BF, -1, -1)

                elif (i - self.st) < self.prompt_learner.num_layers:
                    ctx, ps = self.prompt_learner(x[:, :1, :], i-self.st, istrain=istrain, gamma=gamma)
                    ps_loss += ps
                    if ctx.size(0) != BF:
                        ctx = ctx.expand(BF, -1, -1)

                x = torch.cat((
                    x[:, :1, :], # cls_token
                    ctx,
                    x[:, self.num_tokens+1:, :]
                ), dim=1)
                
            style = 'default' if i >= self.k_s else self.style
            pt_tmp = self.pt_tmp if i >= self.st and i < self.end else False
            pt_spt = self.pt_spt if i >= self.st and i < self.end else False
            x = blk(x, self.einops_from_space, self.einops_to_space, self.einops_from_time,
                    self.einops_to_time,
                    time_n=n, space_f=f, use_checkpoint=use_checkpoint, pt_spt=pt_spt,
                    pt_tmp=pt_tmp, style=style, n_seg=self.n_seg)

        if cls_at_last:
            x = self.norm(x)
            x = x[:, 0]
            x = self.pre_logits(x)

            return x, ps_loss
        else:
            return self.norm(x), ps_loss

    def forward(self, x, use_checkpoint=False, istrain=False, gamma=1.0):
        # Note:  B C T H W => B T C H W
        # The default input order is different from the one in Frozen-in-Time
        x = x.permute(0, 2, 1, 3, 4).contiguous()
        x, ps_loss = self.forward_features(x, use_checkpoint=use_checkpoint, istrain=istrain, gamma=gamma)
        x = self.head(x)

        return x, ps_loss

    def train(self, mode=True):
        if not isinstance(mode, bool):
            raise ValueError("training mode is expected to be boolean")
        self.training = mode
        for m in self.modules():
            m.training = mode

        if mode and self.num_tokens > 0:
            for n, m in self.named_modules():
                if 'prompt' not in n:
                    m.training = False