# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Part of the code is from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py # Modified by Yue Zhao # The original code is under MIT License import gzip import html import os from functools import lru_cache import ftfy import regex as re import torch from transformers import (BertTokenizer, DistilBertTokenizer, GPT2Tokenizer) @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '',) pairs = get_pairs(word) if not pairs: return token+'' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') return text def __call__(self, texts, context_length=77): if isinstance(texts, str): texts = [texts] sot_token = self.encoder["<|startoftext|>"] eot_token = self.encoder["<|endoftext|>"] all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): tokens = tokens[:context_length] result[i, :len(tokens)] = torch.tensor(tokens) if len(result) == 1: return result[0] return result class MyBertTokenizer(object): def __init__(self, name=''): print('=> Initialize MyBertTokenizer ({})'.format(name)) self.tokenizer = BertTokenizer.from_pretrained(name) self.bos_token_id, self.eos_token_id = self.tokenizer('').input_ids self.pad_token_id = 0 def __call__(self, texts, context_length=77): if isinstance(texts, str): texts = [texts] result = torch.zeros(len(texts), context_length, dtype=torch.long) mask = torch.zeros(len(texts), context_length, dtype=torch.float32) for i, text in enumerate(texts): tokens = self.tokenizer(text) input_ids = tokens.input_ids[:context_length] attention_mask = tokens.attention_mask[:context_length] result[i, :len(input_ids)] = torch.tensor(input_ids) mask[i, :len(attention_mask)] = torch.tensor(attention_mask) if len(result) == 1: return result[0], mask[0] return result, mask class MyDistilBertTokenizer(object): def __init__(self, name=''): print('=> Initialize MyDistilBertTokenizer ({})'.format(name)) self.tokenizer = DistilBertTokenizer.from_pretrained(name) def __call__(self, texts, context_length=77): if isinstance(texts, str): texts = [texts] result = torch.zeros(len(texts), context_length, dtype=torch.long) mask = torch.zeros(len(texts), context_length, dtype=torch.float32) for i, text in enumerate(texts): tokens = self.tokenizer(text) input_ids = tokens.input_ids[:context_length] attention_mask = tokens.attention_mask[:context_length] result[i, :len(input_ids)] = torch.tensor(input_ids) mask[i, :len(attention_mask)] = torch.tensor(attention_mask) if len(result) == 1: return result[0], mask[0] return result, mask class MyGPT2Tokenizer(object): def __init__(self, name='', add_bos=False): print('=> Initialize MyGPT2Tokenizer ({})'.format(name)) self.tokenizer = GPT2Tokenizer.from_pretrained(name) self.bos_token_id, self.eos_token_id = self.tokenizer.bos_token_id, self.tokenizer.eos_token_id self.pad_token_id = 0 self.add_bos = add_bos # num_added_tokens = self.tokenizer.add_special_tokens({'pad_token': "[PAD]"}) # print('num_added_tokens={}'.format(len(num_added_tokens))) def __call__(self, texts, context_length=77): if isinstance(texts, str): texts = [texts] result = torch.zeros(len(texts), context_length, dtype=torch.long) for i, text in enumerate(texts): tokens = self.tokenizer(text) if not self.add_bos: input_ids = tokens.input_ids[:context_length - 1] input_ids = input_ids + [self.tokenizer.eos_token_id] # add [EOS] else: input_ids = tokens.input_ids[:context_length - 2] input_ids = [self.tokenizer.bos_token_id] + input_ids + [self.tokenizer.eos_token_id] # add [EOS] # attention_mask = tokens.attention_mask[:context_length] # attention_mask = attention_mask + [0.] * pad_length result[i, :len(input_ids)] = torch.tensor(input_ids) if len(result) == 1: return result[0] return result