File size: 12,994 Bytes
c6f92cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d22e10
c6f92cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d22e10
 
c6f92cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

import math
from functools import reduce
from operator import mul
from einops import rearrange, repeat
import pdb

import torch
import torch.nn as nn
import torch.nn.functional as F

class PromptLearner(nn.Module):
    def __init__(self, ctx_dim=512, n_ctx=16):
        super(PromptLearner, self).__init__()
        self.n_ctx = n_ctx
        self.ctx_dim = ctx_dim

        # initialize prompts
        ctx_vectors = torch.empty(n_ctx, ctx_dim)
        nn.init.normal_(ctx_vectors, std=0.02)
        prompt_prefix = " ".join(["X"] * n_ctx)
        self.ctx = nn.Parameter(ctx_vectors)  # to be optimized
        print(f'Initial context: "{prompt_prefix}"')
        print(f"Number of context words (tokens): {n_ctx}")

    def forward(self):
        return self.ctx

class PromptPoolLearner(nn.Module):
    def __init__(self, prompt_dim=256, size=128, length=1):
        super(PromptPoolLearner, self).__init__()
        self.prompt_dim = prompt_dim
        self.length = length
        self.size = size

        # initiate prompt
        self.prompt_values = nn.Parameter(torch.zeros(size, length, prompt_dim))
        self.id_table = torch.ones([size]).cuda()

        # xavier_uniform initialization
        nn.init.uniform_(self.prompt_values.data, -1, 1)
        
    def l2_normalize(self, x, dim=None, epsilon=1e-12):
        """Normalizes a given vector or matrix."""
        square_sum = torch.sum(x ** 2, dim=dim, keepdim=True)
        x_inv_norm = torch.rsqrt(torch.maximum(square_sum, torch.tensor(epsilon, device=x.device)))
        return x * x_inv_norm

    def forward(self, query, k=0, istrain=False, gamma=1.0):
        BZ = query.shape[0]
        out = dict()
        query = self.l2_normalize(query.squeeze(1), dim=1)
        keys = self.prompt_values.mean(dim=1)
        keys = self.l2_normalize(keys, dim=1)
        similarity = torch.matmul(query, keys.t())

        if k > 0 and k < self.size:

            if istrain:
                inv_freq = self.id_table.sum() / self.id_table.float()
                weights = (similarity + 1) / 2 * gamma + (1 - gamma) * torch.softmax(inv_freq, dim=-1)
                idx = torch.multinomial(weights, k, replacement=False)
            else:
                idx = torch.argsort(similarity, dim=-1, descending=True)[:, :k]

            prompt_id, id_counts = torch.unique(idx, return_counts=True, sorted=True)
            self.id_table[prompt_id] += id_counts
            prompts = self.prompt_values[idx.flatten(), ...].view(BZ, k * self.length, self.prompt_dim)
        else:
            idx = torch.arange(self.size).unsqueeze(0).expand(BZ, -1)
            prompts = self.prompt_values.flatten(0, 1).unsqueeze(0).expand(BZ, -1, -1)

        prompts = self.l2_normalize(prompts, dim=-1)
        out['prompts'] = prompts
        sel_sim = similarity[torch.arange(BZ).view(-1, 1), idx]
        sel_key = keys[idx.flatten(), ...].view(BZ, k, self.prompt_dim)
        diff = F.mse_loss((sel_sim.unsqueeze(1) @ sel_key).squeeze(1), query.detach(), reduction='sum') / BZ
        ksim = torch.sum(torch.abs(torch.matmul(keys, keys.t()) - torch.eye(self.size).to(keys.device))) / BZ
        out['ps_loss'] = diff + ksim

        return out


class VisualPromptLearner(nn.Module):
    def __init__(self, patch_size=16, embed_dim=768, num_layers=12, prompt_dim=256, num_tokens=5, deep=False,
            deep_shared=False, split_st=False, dropout=0.1, pool={}):
        super(VisualPromptLearner, self).__init__()
        self.num_layers = num_layers
        self.embed_dim = embed_dim
        self.prompt_dim = prompt_dim
        self.num_tokens = num_tokens  # number of prompted tokens
        self.prompt_dropout = nn.Dropout(dropout)
        pool_size = pool.get('size', 0)
        self.pool_length = pool.get('length', 1)
        self.use_bank = True if pool_size > 0 and num_tokens <= (pool_size * self.pool_length) else False
        if self.use_bank:
            print(f'Using feature bank with size {pool_size} (dimension: {prompt_dim})')

        if prompt_dim != embed_dim:
            self.prompt_inproj = nn.Linear(embed_dim, prompt_dim, bias=False)
        else:
            self.prompt_inproj = nn.Identity()

        if self.use_bank:
            self.prompt_outproj = nn.Linear(prompt_dim, embed_dim, bias=False)
            nn.init.kaiming_normal_(
                self.prompt_outproj.weight, a=0, mode='fan_out')
        else:
            self.prompt_outproj = nn.Identity()

        self.split_st = split_st # split spatial and temporal prompts

        # initiate prompt:
        val = math.sqrt(6. / float(3 * reduce(mul, (patch_size, patch_size), 1) + prompt_dim))
        if split_st:
            if self.use_bank:
                pool['size'] //= 2
                self.spatial_prompt_pool = PromptPoolLearner(prompt_dim, **pool)
                self.temporal_prompt_pool = PromptPoolLearner(prompt_dim, **pool)
            else:
                self.spatial_prompt_embeddings = nn.Parameter(torch.zeros(
                    1, num_tokens // 2, prompt_dim))
                self.temporal_prompt_embeddings = nn.Parameter(torch.zeros(
                    1, num_tokens // 2, prompt_dim))
                # xavier_uniform initialization
                nn.init.uniform_(self.spatial_prompt_embeddings.data, -val, val)
                nn.init.uniform_(self.temporal_prompt_embeddings.data, -val, val)
        else:
            if self.use_bank:
                self.prompt_pool = PromptPoolLearner(prompt_dim, **pool)
            else:
                self.prompt_embeddings = nn.Parameter(torch.zeros(
                    1, num_tokens, prompt_dim))
                # xavier_uniform initialization
                nn.init.uniform_(self.prompt_embeddings.data, -val, val)

        self.deep = deep or deep_shared
        self.deep_shared = deep_shared
        if deep and (not deep_shared):
            total_d_layer = num_layers - 1
            if split_st:
                if self.use_bank:
                    self.spatial_deep_prompt_pool = nn.ModuleList([
                        PromptPoolLearner(prompt_dim, **pool)
                        for i in range(total_d_layer)])
                    self.temporal_deep_prompt_pool = nn.ModuleList([
                        PromptPoolLearner(prompt_dim, **pool)
                        for i in range(total_d_layer)])
                else:
                    self.spatial_deep_prompt_embeddings = nn.Parameter(torch.zeros(
                        total_d_layer, num_tokens // 2, prompt_dim))
                    self.temporal_deep_prompt_embeddings = nn.Parameter(torch.zeros(
                        total_d_layer, num_tokens // 2, prompt_dim))
                    # xavier_uniform initialization
                    nn.init.uniform_(self.spatial_deep_prompt_embeddings.data, -val, val)
                    nn.init.uniform_(self.temporal_deep_prompt_embeddings.data, -val, val)
            else:
                if self.use_bank:
                    self.deep_prompt_pool = nn.ModuleList([
                        PromptPoolLearner(prompt_dim, **pool)
                        for i in range(total_d_layer)])
                else:
                    self.deep_prompt_embeddings = nn.Parameter(torch.zeros(
                        total_d_layer, num_tokens, prompt_dim))
                    # xavier_uniform initialization
                    nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val)

    def forward(self, query=None, layer=0, istrain=False, gamma=1.0):
        query = query.detach()
        query = self.prompt_inproj(query)
        ps_loss = query.new_zeros([1])
        if self.split_st:
            if self.deep and (not self.deep_shared) and layer > 0:
                if self.use_bank:
                    k = (self.num_tokens // 2) // self.pool_length
                    spatial_out = self.spatial_deep_prompt_pool[layer-1](query, k, istrain, gamma)
                    spatial_prompts = spatial_out['prompts']
                    temporal_out = self.temporal_deep_prompt_pool[layer-1](query, k, istrain, gamma)
                    temporal_prompts = temporal_out['prompts']
                    ps_loss += spatial_out.get('ps_loss', 0) + temporal_out.get('ps_loss', 0)
                else:
                    spatial_prompts = self.spatial_deep_prompt_embeddings[layer-1]
                    temporal_prompts = self.temporal_deep_prompt_embeddings[layer-1]
            else:
                if self.use_bank:
                    k = (self.num_tokens // 2) // self.pool_length
                    spatial_out = self.spatial_prompt_pool(query, k, istrain, gamma)
                    spatial_prompts = spatial_out['prompts']
                    temporal_out = self.temporal_prompt_pool(query, k, istrain, gamma)
                    temporal_prompts = temporal_out['prompts']
                    ps_loss += spatial_out.get('ps_loss', 0) + temporal_out.get('ps_loss', 0)
                else:
                    spatial_prompts = self.spatial_prompt_embeddings
                    temporal_prompts = self.temporal_prompt_embeddings

            prompts = torch.cat((spatial_prompts, temporal_prompts), dim=1)

        else:
            if self.deep and (not self.deep_shared) and layer > 0:
                if self.use_bank:
                    k = self.num_tokens // self.pool_length
                    out = self.deep_prompt_pool[layer-1](query, k, istrain, gamma)
                    prompts = out['prompts']
                    ps_loss += out.get('ps_loss', 0)
                else:
                    prompts = self.deep_prompt_embeddings[layer-1]
            else:
                if self.use_bank:
                    k = self.num_tokens // self.pool_length
                    out = self.prompt_pool(query, k, istrain, gamma)
                    prompts = out['prompts']
                    ps_loss += out.get('ps_loss', 0)
                else:
                    prompts = self.prompt_embeddings

        prompts = self.prompt_dropout(self.prompt_outproj(prompts))
        return prompts, ps_loss


class CMM(nn.Module):
    '''Context modeling module'''
    def __init__(self, num_tokens=8, num_frames=16, embed_dim=768, prompt_dim=256, dropout=0., num_layer=1, shared=False, pool={}):
        super(CMM, self).__init__()
        self.num_tokens = num_tokens
        self.num_frames = num_frames
        self.embed_dim = embed_dim
        self.prompt_dim = prompt_dim
        self.pool_size = pool.get('size', 0)
        self.pool_length = pool.get('length', 1)
        self.use_bank = True if self.pool_size > 0 else False
        self.use_rnn = not self.use_bank
        if self.use_rnn:
            self.rnn = nn.LSTM(input_size=embed_dim, hidden_size=embed_dim,
                num_layers=1, batch_first=True, dropout=dropout, bidirectional=True)
        self.shared = shared
        self.prompt_dropout = nn.Dropout(dropout)

        if self.use_bank:
            print(f'Using feature bank with size {self.pool_size} (dimension: {prompt_dim})')
            if self.use_rnn:
                self.prompt_inproj = nn.Linear(embed_dim * 2, prompt_dim)
                nn.init.kaiming_normal_(
                    self.prompt_inproj.weight, a=0, mode='fan_out')
            else:
                if embed_dim != prompt_dim:
                    self.prompt_inproj = nn.Linear(embed_dim, prompt_dim, bias=False)
                else:
                    self.prompt_inproj = nn.Identity()

            self.prompt_outproj = nn.Linear(prompt_dim, embed_dim, bias=False)
            nn.init.kaiming_normal_(
                self.prompt_outproj.weight, a=0, mode='fan_out')

            if shared:
                self.prompt_pool = PromptPoolLearner(prompt_dim, **pool)
            else:
                self.prompt_pool = nn.ModuleList([
                    PromptPoolLearner(prompt_dim, **pool)
                    for i in range(num_layer)])
        else:
            self.fc = nn.Linear(embed_dim * 2, embed_dim * num_tokens)

    def forward(self, x, layer=0, istrain=False, gamma=1.0):
        BZ = x.size(0)
        x = x.detach()
        x = rearrange(x, 'b (f n) d -> b f n d', f=self.num_frames)
        x = torch.mean(x, dim=2)

        if self.use_rnn:
            x, _ = self.rnn(x)

        ps_loss = x.new_zeros([1])
        if self.use_bank:
            query = self.prompt_inproj(x).flatten(0, 1)
            k = self.num_tokens // self.pool_length
            if self.shared:
                out = self.prompt_pool(query, k, istrain, gamma)
            else:
                out = self.prompt_pool[layer](query, k, istrain, gamma)

            prompts = rearrange(out['prompts'], '(b f) p d -> b (f p) d', f=self.num_frames)
            prompts = self.prompt_outproj(prompts)
            ps_loss += out.get('ps_loss', 0) * self.num_frames

        else:
            prompts = self.fc(x)
            prompts = rearrange(prompts, 'b f (p d) -> b (f p) d', p=self.num_tokens)

        return prompts, ps_loss