Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
# Install hunspell and its dependencies, pip wheels are completely broken
|
4 |
+
subprocess.call(['sudo', 'apt', 'install', 'hunspell', 'hunspell-uk', 'libhunspell-dev'])
|
5 |
+
subprocess.call(['sudo', 'pip', 'install', 'hunspell'])
|
6 |
+
|
7 |
+
# Import hunspell
|
8 |
+
import hunspell
|
9 |
+
# Main imports
|
10 |
+
import gradio as gr
|
11 |
+
import re
|
12 |
+
import stanza
|
13 |
+
import spacy
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
def create_settlement_and_country_lists():
|
17 |
+
settlement_list = []
|
18 |
+
country_list = []
|
19 |
+
|
20 |
+
# Read Ukrainian settlement names from CSV file
|
21 |
+
df_settlements = pd.read_csv("assets/locations/ukrainian_settlement_mames.csv", encoding="utf-8")
|
22 |
+
ukrainian_settlements = df_settlements["Назва об'єкта українською мовою"].values.tolist()
|
23 |
+
settlement_list.extend(ukrainian_settlements)
|
24 |
+
|
25 |
+
# Read European settlement names from CSV file
|
26 |
+
df_eu_settlements = pd.read_csv("assets/locations/european_cities.csv", encoding="utf-8")
|
27 |
+
european_settlements = df_eu_settlements["City"].values.tolist()
|
28 |
+
settlement_list.extend(european_settlements)
|
29 |
+
|
30 |
+
# Convert settlement list to lowercase
|
31 |
+
settlement_list = [word.lower() for word in settlement_list]
|
32 |
+
|
33 |
+
# Read country names from text file
|
34 |
+
with open("assets/locations/countries.txt", "r", encoding="utf-8") as country_file:
|
35 |
+
country_list = [line.strip().lower() for line in country_file]
|
36 |
+
|
37 |
+
return settlement_list, country_list
|
38 |
+
|
39 |
+
# Call the function to create settlement and country lists
|
40 |
+
settlement_list, country_list = create_settlement_and_country_lists()
|
41 |
+
|
42 |
+
spellchecker = hunspell.HunSpell('assets/dictionaries/uk_UA.dic', 'assets/dictionaries/uk_UA.aff')
|
43 |
+
|
44 |
+
settlement_list = [s.lower() for s in settlement_list] # Convert settlement list to lowercase
|
45 |
+
country_list = [c.lower() for c in country_list] # Convert country list to lowercase
|
46 |
+
|
47 |
+
# Initialize Stanza NLP
|
48 |
+
stanza.download('uk')
|
49 |
+
nlp_stanza = stanza.Pipeline('uk', processors='tokenize,pos,ner')
|
50 |
+
|
51 |
+
# Load SpaCy NER model
|
52 |
+
nlp_spacy = spacy.load("uk_ner_web_trf_base")
|
53 |
+
|
54 |
+
def process_text_with_stanza(text):
|
55 |
+
doc = nlp_stanza(text)
|
56 |
+
return format_output(process_text(doc))
|
57 |
+
|
58 |
+
def process_text_with_spacy(text):
|
59 |
+
doc = nlp_spacy(text)
|
60 |
+
return format_output(process_text_spacy(doc))
|
61 |
+
|
62 |
+
def format_output(matches):
|
63 |
+
formatted_matches = []
|
64 |
+
for match in matches:
|
65 |
+
location_type = match[0]
|
66 |
+
entity = match[1]
|
67 |
+
formatted_matches.append(f"{location_type}: {entity}")
|
68 |
+
return "\n".join(formatted_matches) if formatted_matches else notify_no_result()
|
69 |
+
|
70 |
+
def notify_no_result():
|
71 |
+
return "No locations found in the text."
|
72 |
+
|
73 |
+
def process_text(doc):
|
74 |
+
starting_point_patterns = [r'(з|із|із-за|від|от|од){pos:IN} (\w+{ner:LOC})']
|
75 |
+
destination_patterns = [r'(до|в|у|ув|к){pos:IN} (\w+{ner:LOC})']
|
76 |
+
|
77 |
+
starting_point_matches = []
|
78 |
+
for pattern in starting_point_patterns:
|
79 |
+
matches = re.findall(pattern, doc.text)
|
80 |
+
starting_point_matches.extend(matches)
|
81 |
+
|
82 |
+
destination_matches = []
|
83 |
+
for pattern in destination_patterns:
|
84 |
+
matches = re.findall(pattern, doc.text)
|
85 |
+
destination_matches.extend(matches)
|
86 |
+
|
87 |
+
loc_entities = [ent.text for ent in doc.ents if ent.type == 'LOC']
|
88 |
+
if len(loc_entities) == 2 and not starting_point_matches and not destination_matches:
|
89 |
+
starting_point = loc_entities[0]
|
90 |
+
destination = loc_entities[1]
|
91 |
+
return [
|
92 |
+
(starting_point, 'Starting Point', get_base_form_regex(starting_point, settlement_list, country_list, doc)),
|
93 |
+
(destination, 'Destination', get_base_form_regex(destination, settlement_list, country_list, doc))
|
94 |
+
]
|
95 |
+
|
96 |
+
if len(loc_entities) == 1 and not starting_point_matches and not destination_matches:
|
97 |
+
return [(loc_entities[0], 'Unknown', get_base_form_regex(loc_entities[0], settlement_list, country_list, doc))]
|
98 |
+
|
99 |
+
treated_matches = [
|
100 |
+
(match[1], 'Starting Point', get_base_form_regex(match[1], settlement_list, country_list, doc))
|
101 |
+
for match in starting_point_matches
|
102 |
+
] + [
|
103 |
+
(match[1], 'Destination', get_base_form_regex(match[1], settlement_list, country_list, doc))
|
104 |
+
for match in destination_matches
|
105 |
+
]
|
106 |
+
|
107 |
+
formatted_matches = []
|
108 |
+
for match in treated_matches:
|
109 |
+
location_type = match[1]
|
110 |
+
lemma_results = match[2][0] # Access the first element of the nested list
|
111 |
+
formatted_lemma = lemma_results[1].capitalize().strip('\n')
|
112 |
+
formatted_matches.append((location_type, lemma_results[0], formatted_lemma))
|
113 |
+
|
114 |
+
return formatted_matches
|
115 |
+
|
116 |
+
def process_text_spacy(doc):
|
117 |
+
starting_point_patterns = [
|
118 |
+
r'(з|із|із-за|від|от|од){pos:ADP} (\w+{ner:LOC})',
|
119 |
+
r'(\w+{ner:LOC})\s+(з|із|із-за|від|от|од){pos:ADP}'
|
120 |
+
]
|
121 |
+
destination_patterns = [
|
122 |
+
r'(до|в|у|ув|к){pos:ADP} (\w+{ner:LOC})',
|
123 |
+
r'(\w+{ner:LOC})\s+(до|в|у|ув|к){pos:ADP}'
|
124 |
+
]
|
125 |
+
|
126 |
+
starting_point_matches = []
|
127 |
+
for pattern in starting_point_patterns:
|
128 |
+
matches = re.findall(pattern, doc.text)
|
129 |
+
starting_point_matches.extend(matches)
|
130 |
+
|
131 |
+
destination_matches = []
|
132 |
+
for pattern in destination_patterns:
|
133 |
+
matches = re.findall(pattern, doc.text)
|
134 |
+
destination_matches.extend(matches)
|
135 |
+
|
136 |
+
loc_entities = [ent.text for ent in doc.ents if ent.label_ == 'LOC']
|
137 |
+
if len(loc_entities) == 2 and not starting_point_matches and not destination_matches:
|
138 |
+
starting_point = loc_entities[0]
|
139 |
+
destination = loc_entities[1]
|
140 |
+
return [
|
141 |
+
(starting_point, 'Starting Point', get_base_form_stanza(starting_point, settlement_list, country_list, doc)),
|
142 |
+
(destination, 'Destination', get_base_form_stanza(destination, settlement_list, country_list, doc))
|
143 |
+
]
|
144 |
+
|
145 |
+
if len(loc_entities) == 1 and not starting_point_matches and not destination_matches:
|
146 |
+
return [(loc_entities[0], 'Unknown', get_base_form_stanza(loc_entities[0], settlement_list, country_list, doc))]
|
147 |
+
|
148 |
+
treated_matches = [
|
149 |
+
(match[1], 'Starting Point', get_base_form_stanza(match[1], settlement_list, country_list, doc))
|
150 |
+
for match in starting_point_matches
|
151 |
+
] + [
|
152 |
+
(match[1], 'Destination', get_base_form_stanza(match[1], settlement_list, country_list, doc))
|
153 |
+
for match in destination_matches
|
154 |
+
]
|
155 |
+
|
156 |
+
formatted_matches = []
|
157 |
+
for match in treated_matches:
|
158 |
+
location_type = match[1]
|
159 |
+
lemma_results = match[2] # Use directly, as it's already the required format
|
160 |
+
formatted_lemma = lemma_results.capitalize().strip('\n')
|
161 |
+
formatted_matches.append((location_type, lemma_results, formatted_lemma))
|
162 |
+
|
163 |
+
return formatted_matches
|
164 |
+
|
165 |
+
def get_base_form_stanza(word, settlement_list, country_list, doc):
|
166 |
+
token = None
|
167 |
+
base_form = ""
|
168 |
+
for sent in doc.sentences:
|
169 |
+
for wrd in sent.words:
|
170 |
+
if wrd.text.lower() == word.lower():
|
171 |
+
token = wrd
|
172 |
+
break
|
173 |
+
|
174 |
+
if token is not None:
|
175 |
+
if token.upos == 'PROPN' and token.text.lower() not in settlement_list and token.text.lower() not in country_list:
|
176 |
+
base_form = token.lemma
|
177 |
+
else:
|
178 |
+
base_form = token.text
|
179 |
+
|
180 |
+
return base_form
|
181 |
+
|
182 |
+
def get_base_form_regex(word, settlement_list, country_list, doc):
|
183 |
+
base_form = ""
|
184 |
+
base_form_regex = ""
|
185 |
+
|
186 |
+
if word.lower() in settlement_list or word.lower() in country_list:
|
187 |
+
base_form = word.lower()
|
188 |
+
else:
|
189 |
+
base_form = get_base_form_stanza(word, settlement_list, country_list, doc)
|
190 |
+
|
191 |
+
if base_form:
|
192 |
+
base_form_regex = base_form
|
193 |
+
|
194 |
+
return base_form_regex, base_form
|
195 |
+
|
196 |
+
iface = gr.Interface(
|
197 |
+
fn=[process_text_with_stanza, process_text_with_spacy],
|
198 |
+
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
|
199 |
+
outputs=["text", "text"],
|
200 |
+
title="Text Processing Demo",
|
201 |
+
description="A demo to process text and extract locations using Stanza and SpaCy.",
|
202 |
+
examples=[
|
203 |
+
["Автобус з Києва до Житомира"],
|
204 |
+
["Автобус з Києва в Бердичів"],
|
205 |
+
["Поїздка з Варшави до Івано-Франківська"],
|
206 |
+
]
|
207 |
+
)
|
208 |
+
|
209 |
+
iface.launch()
|