Spaces:
Running
on
Zero
Running
on
Zero
kxhit
commited on
Commit
·
dbeb165
1
Parent(s):
ba76f8a
cuda reinit?
Browse files
app.py
CHANGED
@@ -114,13 +114,12 @@ pipeline = pipeline.to(device)
|
|
114 |
pipeline.enable_vae_slicing()
|
115 |
# pipeline.enable_xformers_memory_efficient_attention()
|
116 |
|
117 |
-
generator = torch.Generator(device=device).manual_seed(0)
|
118 |
-
|
119 |
|
120 |
@spaces.GPU(duration=120)
|
121 |
def run_eschernet(eschernet_input_dict, sample_steps, sample_seed, nvs_num, nvs_mode):
|
122 |
# set the random seed
|
123 |
-
generator.manual_seed(sample_seed)
|
|
|
124 |
T_out = nvs_num
|
125 |
T_in = len(eschernet_input_dict['imgs'])
|
126 |
####### output pose
|
@@ -392,7 +391,7 @@ def get_reconstructed_scene(filelist, schedule, niter, min_conf_thr,
|
|
392 |
# for eschernet
|
393 |
# get optimized values from scene
|
394 |
rgbimg = to_numpy(scene.imgs)
|
395 |
-
focals = to_numpy(scene.get_focals().cpu())
|
396 |
cams2world = to_numpy(scene.get_im_poses().cpu())
|
397 |
|
398 |
# 3D pointcloud from depthmap, poses and intrinsics
|
@@ -478,7 +477,7 @@ def get_reconstructed_scene(filelist, schedule, niter, min_conf_thr,
|
|
478 |
eschernet_input = {"poses": cams2world,
|
479 |
"radii": radii,
|
480 |
"imgs": rgbaimg}
|
481 |
-
|
482 |
outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
|
483 |
clean_depth, transparent_cams, cam_size, same_focals=same_focals)
|
484 |
|
|
|
114 |
pipeline.enable_vae_slicing()
|
115 |
# pipeline.enable_xformers_memory_efficient_attention()
|
116 |
|
|
|
|
|
117 |
|
118 |
@spaces.GPU(duration=120)
|
119 |
def run_eschernet(eschernet_input_dict, sample_steps, sample_seed, nvs_num, nvs_mode):
|
120 |
# set the random seed
|
121 |
+
generator = torch.Generator(device=device).manual_seed(sample_seed)
|
122 |
+
# generator = None
|
123 |
T_out = nvs_num
|
124 |
T_in = len(eschernet_input_dict['imgs'])
|
125 |
####### output pose
|
|
|
391 |
# for eschernet
|
392 |
# get optimized values from scene
|
393 |
rgbimg = to_numpy(scene.imgs)
|
394 |
+
# focals = to_numpy(scene.get_focals().cpu())
|
395 |
cams2world = to_numpy(scene.get_im_poses().cpu())
|
396 |
|
397 |
# 3D pointcloud from depthmap, poses and intrinsics
|
|
|
477 |
eschernet_input = {"poses": cams2world,
|
478 |
"radii": radii,
|
479 |
"imgs": rgbaimg}
|
480 |
+
print("got eschernet input")
|
481 |
outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
|
482 |
clean_depth, transparent_cams, cam_size, same_focals=same_focals)
|
483 |
|