Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import warnings | |
| from collections import defaultdict | |
| from pathlib import Path | |
| from typing import Callable, Dict, List, Optional, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from huggingface_hub import hf_hub_download | |
| from .models.attention_processor import ( | |
| AttnAddedKVProcessor, | |
| AttnAddedKVProcessor2_0, | |
| CustomDiffusionAttnProcessor, | |
| CustomDiffusionXFormersAttnProcessor, | |
| LoRAAttnAddedKVProcessor, | |
| LoRAAttnProcessor, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| SlicedAttnAddedKVProcessor, | |
| XFormersAttnProcessor, | |
| ) | |
| from .utils import ( | |
| DIFFUSERS_CACHE, | |
| HF_HUB_OFFLINE, | |
| TEXT_ENCODER_ATTN_MODULE, | |
| _get_model_file, | |
| deprecate, | |
| is_safetensors_available, | |
| is_transformers_available, | |
| logging, | |
| ) | |
| if is_safetensors_available(): | |
| import safetensors | |
| if is_transformers_available(): | |
| from transformers import PreTrainedModel, PreTrainedTokenizer | |
| logger = logging.get_logger(__name__) | |
| TEXT_ENCODER_NAME = "text_encoder" | |
| UNET_NAME = "unet" | |
| LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" | |
| LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" | |
| TEXT_INVERSION_NAME = "learned_embeds.bin" | |
| TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors" | |
| CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin" | |
| CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors" | |
| class AttnProcsLayers(torch.nn.Module): | |
| def __init__(self, state_dict: Dict[str, torch.Tensor]): | |
| super().__init__() | |
| self.layers = torch.nn.ModuleList(state_dict.values()) | |
| self.mapping = dict(enumerate(state_dict.keys())) | |
| self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} | |
| # .processor for unet, .self_attn for text encoder | |
| self.split_keys = [".processor", ".self_attn"] | |
| # we add a hook to state_dict() and load_state_dict() so that the | |
| # naming fits with `unet.attn_processors` | |
| def map_to(module, state_dict, *args, **kwargs): | |
| new_state_dict = {} | |
| for key, value in state_dict.items(): | |
| num = int(key.split(".")[1]) # 0 is always "layers" | |
| new_key = key.replace(f"layers.{num}", module.mapping[num]) | |
| new_state_dict[new_key] = value | |
| return new_state_dict | |
| def remap_key(key, state_dict): | |
| for k in self.split_keys: | |
| if k in key: | |
| return key.split(k)[0] + k | |
| raise ValueError( | |
| f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}." | |
| ) | |
| def map_from(module, state_dict, *args, **kwargs): | |
| all_keys = list(state_dict.keys()) | |
| for key in all_keys: | |
| replace_key = remap_key(key, state_dict) | |
| new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") | |
| state_dict[new_key] = state_dict[key] | |
| del state_dict[key] | |
| self._register_state_dict_hook(map_to) | |
| self._register_load_state_dict_pre_hook(map_from, with_module=True) | |
| class UNet2DConditionLoadersMixin: | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| unet_name = UNET_NAME | |
| def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | |
| r""" | |
| Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be | |
| defined in | |
| [`cross_attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py) | |
| and be a `torch.nn.Module` class. | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a directory (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. | |
| # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning | |
| network_alpha = kwargs.pop("network_alpha", None) | |
| if use_safetensors and not is_safetensors_available(): | |
| raise ValueError( | |
| "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors" | |
| ) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = is_safetensors_available() | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| model_file = None | |
| if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| # Let's first try to load .safetensors weights | |
| if (use_safetensors and weight_name is None) or ( | |
| weight_name is not None and weight_name.endswith(".safetensors") | |
| ): | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
| except IOError as e: | |
| if not allow_pickle: | |
| raise e | |
| # try loading non-safetensors weights | |
| pass | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| else: | |
| state_dict = pretrained_model_name_or_path_or_dict | |
| # fill attn processors | |
| attn_processors = {} | |
| is_lora = all("lora" in k for k in state_dict.keys()) | |
| is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys()) | |
| if is_lora: | |
| is_new_lora_format = all( | |
| key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys() | |
| ) | |
| if is_new_lora_format: | |
| # Strip the `"unet"` prefix. | |
| is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys()) | |
| if is_text_encoder_present: | |
| warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)." | |
| warnings.warn(warn_message) | |
| unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)] | |
| state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys} | |
| lora_grouped_dict = defaultdict(dict) | |
| for key, value in state_dict.items(): | |
| attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) | |
| lora_grouped_dict[attn_processor_key][sub_key] = value | |
| for key, value_dict in lora_grouped_dict.items(): | |
| rank = value_dict["to_k_lora.down.weight"].shape[0] | |
| hidden_size = value_dict["to_k_lora.up.weight"].shape[0] | |
| attn_processor = self | |
| for sub_key in key.split("."): | |
| attn_processor = getattr(attn_processor, sub_key) | |
| if isinstance( | |
| attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0) | |
| ): | |
| cross_attention_dim = value_dict["add_k_proj_lora.down.weight"].shape[1] | |
| attn_processor_class = LoRAAttnAddedKVProcessor | |
| else: | |
| cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1] | |
| if isinstance(attn_processor, (XFormersAttnProcessor, LoRAXFormersAttnProcessor)): | |
| attn_processor_class = LoRAXFormersAttnProcessor | |
| else: | |
| attn_processor_class = ( | |
| LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
| ) | |
| attn_processors[key] = attn_processor_class( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| rank=rank, | |
| network_alpha=network_alpha, | |
| ) | |
| attn_processors[key].load_state_dict(value_dict) | |
| elif is_custom_diffusion: | |
| custom_diffusion_grouped_dict = defaultdict(dict) | |
| for key, value in state_dict.items(): | |
| if len(value) == 0: | |
| custom_diffusion_grouped_dict[key] = {} | |
| else: | |
| if "to_out" in key: | |
| attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) | |
| else: | |
| attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:]) | |
| custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value | |
| for key, value_dict in custom_diffusion_grouped_dict.items(): | |
| if len(value_dict) == 0: | |
| attn_processors[key] = CustomDiffusionAttnProcessor( | |
| train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None | |
| ) | |
| else: | |
| cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1] | |
| hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0] | |
| train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False | |
| attn_processors[key] = CustomDiffusionAttnProcessor( | |
| train_kv=True, | |
| train_q_out=train_q_out, | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| attn_processors[key].load_state_dict(value_dict) | |
| else: | |
| raise ValueError( | |
| f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training." | |
| ) | |
| # set correct dtype & device | |
| attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()} | |
| # set layers | |
| self.set_attn_processor(attn_processors) | |
| def save_attn_procs( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = False, | |
| **kwargs, | |
| ): | |
| r""" | |
| Save an attention processor to a directory so that it can be reloaded using the | |
| [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save an attention processor to. Will be created if it doesn't exist. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| """ | |
| weight_name = weight_name or deprecate( | |
| "weights_name", | |
| "0.20.0", | |
| "`weights_name` is deprecated, please use `weight_name` instead.", | |
| take_from=kwargs, | |
| ) | |
| if os.path.isfile(save_directory): | |
| logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
| return | |
| if save_function is None: | |
| if safe_serialization: | |
| def save_function(weights, filename): | |
| return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) | |
| else: | |
| save_function = torch.save | |
| os.makedirs(save_directory, exist_ok=True) | |
| is_custom_diffusion = any( | |
| isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)) | |
| for (_, x) in self.attn_processors.items() | |
| ) | |
| if is_custom_diffusion: | |
| model_to_save = AttnProcsLayers( | |
| { | |
| y: x | |
| for (y, x) in self.attn_processors.items() | |
| if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)) | |
| } | |
| ) | |
| state_dict = model_to_save.state_dict() | |
| for name, attn in self.attn_processors.items(): | |
| if len(attn.state_dict()) == 0: | |
| state_dict[name] = {} | |
| else: | |
| model_to_save = AttnProcsLayers(self.attn_processors) | |
| state_dict = model_to_save.state_dict() | |
| if weight_name is None: | |
| if safe_serialization: | |
| weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE | |
| else: | |
| weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME | |
| # Save the model | |
| save_function(state_dict, os.path.join(save_directory, weight_name)) | |
| logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}") | |
| class TextualInversionLoaderMixin: | |
| r""" | |
| Load textual inversion tokens and embeddings to the tokenizer and text encoder. | |
| """ | |
| def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): | |
| r""" | |
| Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to | |
| be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual | |
| inversion token or if the textual inversion token is a single vector, the input prompt is returned. | |
| Parameters: | |
| prompt (`str` or list of `str`): | |
| The prompt or prompts to guide the image generation. | |
| tokenizer (`PreTrainedTokenizer`): | |
| The tokenizer responsible for encoding the prompt into input tokens. | |
| Returns: | |
| `str` or list of `str`: The converted prompt | |
| """ | |
| if not isinstance(prompt, List): | |
| prompts = [prompt] | |
| else: | |
| prompts = prompt | |
| prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts] | |
| if not isinstance(prompt, List): | |
| return prompts[0] | |
| return prompts | |
| def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): | |
| r""" | |
| Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds | |
| to a multi-vector textual inversion embedding, this function will process the prompt so that the special token | |
| is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual | |
| inversion token or a textual inversion token that is a single vector, the input prompt is simply returned. | |
| Parameters: | |
| prompt (`str`): | |
| The prompt to guide the image generation. | |
| tokenizer (`PreTrainedTokenizer`): | |
| The tokenizer responsible for encoding the prompt into input tokens. | |
| Returns: | |
| `str`: The converted prompt | |
| """ | |
| tokens = tokenizer.tokenize(prompt) | |
| unique_tokens = set(tokens) | |
| for token in unique_tokens: | |
| if token in tokenizer.added_tokens_encoder: | |
| replacement = token | |
| i = 1 | |
| while f"{token}_{i}" in tokenizer.added_tokens_encoder: | |
| replacement += f" {token}_{i}" | |
| i += 1 | |
| prompt = prompt.replace(token, replacement) | |
| return prompt | |
| def load_textual_inversion( | |
| self, | |
| pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]], | |
| token: Optional[Union[str, List[str]]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Load textual inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and | |
| Automatic1111 formats are supported). | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`): | |
| Can be either one of the following or a list of them: | |
| - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a | |
| pretrained model hosted on the Hub. | |
| - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual | |
| inversion weights. | |
| - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| token (`str` or `List[str]`, *optional*): | |
| Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a | |
| list, then `token` must also be a list of equal length. | |
| weight_name (`str`, *optional*): | |
| Name of a custom weight file. This should be used when: | |
| - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight | |
| name such as `text_inv.bin`. | |
| - The saved textual inversion file is in the Automatic1111 format. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| Example: | |
| To load a textual inversion embedding vector in 🤗 Diffusers format: | |
| ```py | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
| pipe.load_textual_inversion("sd-concepts-library/cat-toy") | |
| prompt = "A <cat-toy> backpack" | |
| image = pipe(prompt, num_inference_steps=50).images[0] | |
| image.save("cat-backpack.png") | |
| ``` | |
| To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first | |
| (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector | |
| locally: | |
| ```py | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
| pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2") | |
| prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details." | |
| image = pipe(prompt, num_inference_steps=50).images[0] | |
| image.save("character.png") | |
| ``` | |
| """ | |
| if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer): | |
| raise ValueError( | |
| f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling" | |
| f" `{self.load_textual_inversion.__name__}`" | |
| ) | |
| if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel): | |
| raise ValueError( | |
| f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling" | |
| f" `{self.load_textual_inversion.__name__}`" | |
| ) | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| if use_safetensors and not is_safetensors_available(): | |
| raise ValueError( | |
| "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors" | |
| ) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = is_safetensors_available() | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "text_inversion", | |
| "framework": "pytorch", | |
| } | |
| if not isinstance(pretrained_model_name_or_path, list): | |
| pretrained_model_name_or_paths = [pretrained_model_name_or_path] | |
| else: | |
| pretrained_model_name_or_paths = pretrained_model_name_or_path | |
| if isinstance(token, str): | |
| tokens = [token] | |
| elif token is None: | |
| tokens = [None] * len(pretrained_model_name_or_paths) | |
| else: | |
| tokens = token | |
| if len(pretrained_model_name_or_paths) != len(tokens): | |
| raise ValueError( | |
| f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)}" | |
| f"Make sure both lists have the same length." | |
| ) | |
| valid_tokens = [t for t in tokens if t is not None] | |
| if len(set(valid_tokens)) < len(valid_tokens): | |
| raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}") | |
| token_ids_and_embeddings = [] | |
| for pretrained_model_name_or_path, token in zip(pretrained_model_name_or_paths, tokens): | |
| if not isinstance(pretrained_model_name_or_path, dict): | |
| # 1. Load textual inversion file | |
| model_file = None | |
| # Let's first try to load .safetensors weights | |
| if (use_safetensors and weight_name is None) or ( | |
| weight_name is not None and weight_name.endswith(".safetensors") | |
| ): | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=weight_name or TEXT_INVERSION_NAME_SAFE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
| except Exception as e: | |
| if not allow_pickle: | |
| raise e | |
| model_file = None | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=weight_name or TEXT_INVERSION_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| else: | |
| state_dict = pretrained_model_name_or_path | |
| # 2. Load token and embedding correcly from file | |
| loaded_token = None | |
| if isinstance(state_dict, torch.Tensor): | |
| if token is None: | |
| raise ValueError( | |
| "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`." | |
| ) | |
| embedding = state_dict | |
| elif len(state_dict) == 1: | |
| # diffusers | |
| loaded_token, embedding = next(iter(state_dict.items())) | |
| elif "string_to_param" in state_dict: | |
| # A1111 | |
| loaded_token = state_dict["name"] | |
| embedding = state_dict["string_to_param"]["*"] | |
| if token is not None and loaded_token != token: | |
| logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.") | |
| else: | |
| token = loaded_token | |
| embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device) | |
| # 3. Make sure we don't mess up the tokenizer or text encoder | |
| vocab = self.tokenizer.get_vocab() | |
| if token in vocab: | |
| raise ValueError( | |
| f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder." | |
| ) | |
| elif f"{token}_1" in vocab: | |
| multi_vector_tokens = [token] | |
| i = 1 | |
| while f"{token}_{i}" in self.tokenizer.added_tokens_encoder: | |
| multi_vector_tokens.append(f"{token}_{i}") | |
| i += 1 | |
| raise ValueError( | |
| f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder." | |
| ) | |
| is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1 | |
| if is_multi_vector: | |
| tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])] | |
| embeddings = [e for e in embedding] # noqa: C416 | |
| else: | |
| tokens = [token] | |
| embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding] | |
| # add tokens and get ids | |
| self.tokenizer.add_tokens(tokens) | |
| token_ids = self.tokenizer.convert_tokens_to_ids(tokens) | |
| token_ids_and_embeddings += zip(token_ids, embeddings) | |
| logger.info(f"Loaded textual inversion embedding for {token}.") | |
| # resize token embeddings and set all new embeddings | |
| self.text_encoder.resize_token_embeddings(len(self.tokenizer)) | |
| for token_id, embedding in token_ids_and_embeddings: | |
| self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding | |
| class LoraLoaderMixin: | |
| r""" | |
| Load LoRA layers into [`UNet2DConditionModel`] and | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
| """ | |
| text_encoder_name = TEXT_ENCODER_NAME | |
| unet_name = UNET_NAME | |
| def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): | |
| r""" | |
| Load pretrained LoRA attention processor layers into [`UNet2DConditionModel`] and | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
| the Hub. | |
| - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
| with [`ModelMixin.save_pretrained`]. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| The subfolder location of a model file within a larger model repository on the Hub or locally. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| """ | |
| # Load the main state dict first which has the LoRA layers for either of | |
| # UNet and text encoder or both. | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| # set lora scale to a reasonable default | |
| self._lora_scale = 1.0 | |
| if use_safetensors and not is_safetensors_available(): | |
| raise ValueError( | |
| "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors" | |
| ) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = is_safetensors_available() | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| model_file = None | |
| if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| # Let's first try to load .safetensors weights | |
| if (use_safetensors and weight_name is None) or ( | |
| weight_name is not None and weight_name.endswith(".safetensors") | |
| ): | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
| except IOError as e: | |
| if not allow_pickle: | |
| raise e | |
| # try loading non-safetensors weights | |
| pass | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| else: | |
| state_dict = pretrained_model_name_or_path_or_dict | |
| # Convert kohya-ss Style LoRA attn procs to diffusers attn procs | |
| network_alpha = None | |
| if all((k.startswith("lora_te_") or k.startswith("lora_unet_")) for k in state_dict.keys()): | |
| state_dict, network_alpha = self._convert_kohya_lora_to_diffusers(state_dict) | |
| # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), | |
| # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as | |
| # their prefixes. | |
| keys = list(state_dict.keys()) | |
| if all(key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in keys): | |
| # Load the layers corresponding to UNet. | |
| unet_keys = [k for k in keys if k.startswith(self.unet_name)] | |
| logger.info(f"Loading {self.unet_name}.") | |
| unet_lora_state_dict = { | |
| k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys | |
| } | |
| self.unet.load_attn_procs(unet_lora_state_dict, network_alpha=network_alpha) | |
| # Load the layers corresponding to text encoder and make necessary adjustments. | |
| text_encoder_keys = [k for k in keys if k.startswith(self.text_encoder_name)] | |
| text_encoder_lora_state_dict = { | |
| k.replace(f"{self.text_encoder_name}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys | |
| } | |
| if len(text_encoder_lora_state_dict) > 0: | |
| logger.info(f"Loading {self.text_encoder_name}.") | |
| attn_procs_text_encoder = self._load_text_encoder_attn_procs( | |
| text_encoder_lora_state_dict, network_alpha=network_alpha | |
| ) | |
| self._modify_text_encoder(attn_procs_text_encoder) | |
| # save lora attn procs of text encoder so that it can be easily retrieved | |
| self._text_encoder_lora_attn_procs = attn_procs_text_encoder | |
| # Otherwise, we're dealing with the old format. This means the `state_dict` should only | |
| # contain the module names of the `unet` as its keys WITHOUT any prefix. | |
| elif not all( | |
| key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys() | |
| ): | |
| self.unet.load_attn_procs(state_dict) | |
| warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`." | |
| warnings.warn(warn_message) | |
| def lora_scale(self) -> float: | |
| # property function that returns the lora scale which can be set at run time by the pipeline. | |
| # if _lora_scale has not been set, return 1 | |
| return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 | |
| def text_encoder_lora_attn_procs(self): | |
| if hasattr(self, "_text_encoder_lora_attn_procs"): | |
| return self._text_encoder_lora_attn_procs | |
| return | |
| def _remove_text_encoder_monkey_patch(self): | |
| # Loop over the CLIPAttention module of text_encoder | |
| for name, attn_module in self.text_encoder.named_modules(): | |
| if name.endswith(TEXT_ENCODER_ATTN_MODULE): | |
| # Loop over the LoRA layers | |
| for _, text_encoder_attr in self._lora_attn_processor_attr_to_text_encoder_attr.items(): | |
| # Retrieve the q/k/v/out projection of CLIPAttention | |
| module = attn_module.get_submodule(text_encoder_attr) | |
| if hasattr(module, "old_forward"): | |
| # restore original `forward` to remove monkey-patch | |
| module.forward = module.old_forward | |
| delattr(module, "old_forward") | |
| def _modify_text_encoder(self, attn_processors: Dict[str, LoRAAttnProcessor]): | |
| r""" | |
| Monkey-patches the forward passes of attention modules of the text encoder. | |
| Parameters: | |
| attn_processors: Dict[str, `LoRAAttnProcessor`]: | |
| A dictionary mapping the module names and their corresponding [`~LoRAAttnProcessor`]. | |
| """ | |
| # First, remove any monkey-patch that might have been applied before | |
| self._remove_text_encoder_monkey_patch() | |
| # Loop over the CLIPAttention module of text_encoder | |
| for name, attn_module in self.text_encoder.named_modules(): | |
| if name.endswith(TEXT_ENCODER_ATTN_MODULE): | |
| # Loop over the LoRA layers | |
| for attn_proc_attr, text_encoder_attr in self._lora_attn_processor_attr_to_text_encoder_attr.items(): | |
| # Retrieve the q/k/v/out projection of CLIPAttention and its corresponding LoRA layer. | |
| module = attn_module.get_submodule(text_encoder_attr) | |
| lora_layer = attn_processors[name].get_submodule(attn_proc_attr) | |
| # save old_forward to module that can be used to remove monkey-patch | |
| old_forward = module.old_forward = module.forward | |
| # create a new scope that locks in the old_forward, lora_layer value for each new_forward function | |
| # for more detail, see https://github.com/huggingface/diffusers/pull/3490#issuecomment-1555059060 | |
| def make_new_forward(old_forward, lora_layer): | |
| def new_forward(x): | |
| result = old_forward(x) + self.lora_scale * lora_layer(x) | |
| return result | |
| return new_forward | |
| # Monkey-patch. | |
| module.forward = make_new_forward(old_forward, lora_layer) | |
| def _lora_attn_processor_attr_to_text_encoder_attr(self): | |
| return { | |
| "to_q_lora": "q_proj", | |
| "to_k_lora": "k_proj", | |
| "to_v_lora": "v_proj", | |
| "to_out_lora": "out_proj", | |
| } | |
| def _load_text_encoder_attn_procs( | |
| self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs | |
| ): | |
| r""" | |
| Load pretrained attention processor layers for | |
| [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | |
| <Tip warning={true}> | |
| This function is experimental and might change in the future. | |
| </Tip> | |
| Parameters: | |
| pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
| Can be either: | |
| - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
| Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. | |
| - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., | |
| `./my_model_directory/`. | |
| - A [torch state | |
| dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
| standard cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
| file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether or not to only look at local files (i.e., do not try to download the model). | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `diffusers-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| In case the relevant files are located inside a subfolder of the model repo (either remote in | |
| huggingface.co or downloaded locally), you can specify the folder name here. | |
| mirror (`str`, *optional*): | |
| Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
| problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
| Please refer to the mirror site for more information. | |
| Returns: | |
| `Dict[name, LoRAAttnProcessor]`: Mapping between the module names and their corresponding | |
| [`LoRAAttnProcessor`]. | |
| <Tip> | |
| It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated | |
| models](https://huggingface.co/docs/hub/models-gated#gated-models). | |
| </Tip> | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| weight_name = kwargs.pop("weight_name", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| network_alpha = kwargs.pop("network_alpha", None) | |
| if use_safetensors and not is_safetensors_available(): | |
| raise ValueError( | |
| "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors" | |
| ) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| use_safetensors = is_safetensors_available() | |
| allow_pickle = True | |
| user_agent = { | |
| "file_type": "attn_procs_weights", | |
| "framework": "pytorch", | |
| } | |
| model_file = None | |
| if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
| # Let's first try to load .safetensors weights | |
| if (use_safetensors and weight_name is None) or ( | |
| weight_name is not None and weight_name.endswith(".safetensors") | |
| ): | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = safetensors.torch.load_file(model_file, device="cpu") | |
| except IOError as e: | |
| if not allow_pickle: | |
| raise e | |
| # try loading non-safetensors weights | |
| pass | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path_or_dict, | |
| weights_name=weight_name or LORA_WEIGHT_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| ) | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| else: | |
| state_dict = pretrained_model_name_or_path_or_dict | |
| # fill attn processors | |
| attn_processors = {} | |
| is_lora = all("lora" in k for k in state_dict.keys()) | |
| if is_lora: | |
| lora_grouped_dict = defaultdict(dict) | |
| for key, value in state_dict.items(): | |
| attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) | |
| lora_grouped_dict[attn_processor_key][sub_key] = value | |
| for key, value_dict in lora_grouped_dict.items(): | |
| rank = value_dict["to_k_lora.down.weight"].shape[0] | |
| cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1] | |
| hidden_size = value_dict["to_k_lora.up.weight"].shape[0] | |
| attn_processor_class = ( | |
| LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
| ) | |
| attn_processors[key] = attn_processor_class( | |
| hidden_size=hidden_size, | |
| cross_attention_dim=cross_attention_dim, | |
| rank=rank, | |
| network_alpha=network_alpha, | |
| ) | |
| attn_processors[key].load_state_dict(value_dict) | |
| else: | |
| raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.") | |
| # set correct dtype & device | |
| attn_processors = { | |
| k: v.to(device=self.device, dtype=self.text_encoder.dtype) for k, v in attn_processors.items() | |
| } | |
| return attn_processors | |
| def save_lora_weights( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | |
| text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | |
| is_main_process: bool = True, | |
| weight_name: str = None, | |
| save_function: Callable = None, | |
| safe_serialization: bool = False, | |
| ): | |
| r""" | |
| Save the LoRA parameters corresponding to the UNet and text encoder. | |
| Arguments: | |
| save_directory (`str` or `os.PathLike`): | |
| Directory to save LoRA parameters to. Will be created if it doesn't exist. | |
| unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the UNet. | |
| text_encoder_lora_layers (`Dict[str, torch.nn.Module] or `Dict[str, torch.Tensor]`): | |
| State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | |
| encoder LoRA state dict because it comes 🤗 Transformers. | |
| is_main_process (`bool`, *optional*, defaults to `True`): | |
| Whether the process calling this is the main process or not. Useful during distributed training and you | |
| need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
| process to avoid race conditions. | |
| save_function (`Callable`): | |
| The function to use to save the state dictionary. Useful during distributed training when you need to | |
| replace `torch.save` with another method. Can be configured with the environment variable | |
| `DIFFUSERS_SAVE_MODE`. | |
| """ | |
| if os.path.isfile(save_directory): | |
| logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
| return | |
| if save_function is None: | |
| if safe_serialization: | |
| def save_function(weights, filename): | |
| return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) | |
| else: | |
| save_function = torch.save | |
| os.makedirs(save_directory, exist_ok=True) | |
| # Create a flat dictionary. | |
| state_dict = {} | |
| if unet_lora_layers is not None: | |
| weights = ( | |
| unet_lora_layers.state_dict() if isinstance(unet_lora_layers, torch.nn.Module) else unet_lora_layers | |
| ) | |
| unet_lora_state_dict = {f"{self.unet_name}.{module_name}": param for module_name, param in weights.items()} | |
| state_dict.update(unet_lora_state_dict) | |
| if text_encoder_lora_layers is not None: | |
| weights = ( | |
| text_encoder_lora_layers.state_dict() | |
| if isinstance(text_encoder_lora_layers, torch.nn.Module) | |
| else text_encoder_lora_layers | |
| ) | |
| text_encoder_lora_state_dict = { | |
| f"{self.text_encoder_name}.{module_name}": param for module_name, param in weights.items() | |
| } | |
| state_dict.update(text_encoder_lora_state_dict) | |
| # Save the model | |
| if weight_name is None: | |
| if safe_serialization: | |
| weight_name = LORA_WEIGHT_NAME_SAFE | |
| else: | |
| weight_name = LORA_WEIGHT_NAME | |
| save_function(state_dict, os.path.join(save_directory, weight_name)) | |
| logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}") | |
| def _convert_kohya_lora_to_diffusers(self, state_dict): | |
| unet_state_dict = {} | |
| te_state_dict = {} | |
| network_alpha = None | |
| for key, value in state_dict.items(): | |
| if "lora_down" in key: | |
| lora_name = key.split(".")[0] | |
| lora_name_up = lora_name + ".lora_up.weight" | |
| lora_name_alpha = lora_name + ".alpha" | |
| if lora_name_alpha in state_dict: | |
| alpha = state_dict[lora_name_alpha].item() | |
| if network_alpha is None: | |
| network_alpha = alpha | |
| elif network_alpha != alpha: | |
| raise ValueError("Network alpha is not consistent") | |
| if lora_name.startswith("lora_unet_"): | |
| diffusers_name = key.replace("lora_unet_", "").replace("_", ".") | |
| diffusers_name = diffusers_name.replace("down.blocks", "down_blocks") | |
| diffusers_name = diffusers_name.replace("mid.block", "mid_block") | |
| diffusers_name = diffusers_name.replace("up.blocks", "up_blocks") | |
| diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks") | |
| diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora") | |
| diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora") | |
| diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora") | |
| diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora") | |
| if "transformer_blocks" in diffusers_name: | |
| if "attn1" in diffusers_name or "attn2" in diffusers_name: | |
| diffusers_name = diffusers_name.replace("attn1", "attn1.processor") | |
| diffusers_name = diffusers_name.replace("attn2", "attn2.processor") | |
| unet_state_dict[diffusers_name] = value | |
| unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up] | |
| elif lora_name.startswith("lora_te_"): | |
| diffusers_name = key.replace("lora_te_", "").replace("_", ".") | |
| diffusers_name = diffusers_name.replace("text.model", "text_model") | |
| diffusers_name = diffusers_name.replace("self.attn", "self_attn") | |
| diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") | |
| diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") | |
| diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") | |
| diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") | |
| if "self_attn" in diffusers_name: | |
| te_state_dict[diffusers_name] = value | |
| te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict[lora_name_up] | |
| unet_state_dict = {f"{UNET_NAME}.{module_name}": params for module_name, params in unet_state_dict.items()} | |
| te_state_dict = {f"{TEXT_ENCODER_NAME}.{module_name}": params for module_name, params in te_state_dict.items()} | |
| new_state_dict = {**unet_state_dict, **te_state_dict} | |
| return new_state_dict, network_alpha | |
| class FromSingleFileMixin: | |
| """ | |
| Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. | |
| """ | |
| def from_ckpt(cls, *args, **kwargs): | |
| deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead." | |
| deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False) | |
| return cls.from_single_file(*args, **kwargs) | |
| def from_single_file(cls, pretrained_model_link_or_path, **kwargs): | |
| r""" | |
| Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` format. The pipeline | |
| is set in evaluation mode (`model.eval()`) by default. | |
| Parameters: | |
| pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): | |
| Can be either: | |
| - A link to the `.ckpt` file (for example | |
| `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. | |
| - A path to a *file* containing all pipeline weights. | |
| torch_dtype (`str` or `torch.dtype`, *optional*): | |
| Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
| dtype is automatically derived from the model's weights. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to True, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| use_safetensors (`bool`, *optional*, defaults to `None`): | |
| If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
| safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
| weights. If set to `False`, safetensors weights are not loaded. | |
| extract_ema (`bool`, *optional*, defaults to `False`): | |
| Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield | |
| higher quality images for inference. Non-EMA weights are usually better to continue finetuning. | |
| upcast_attention (`bool`, *optional*, defaults to `None`): | |
| Whether the attention computation should always be upcasted. | |
| image_size (`int`, *optional*, defaults to 512): | |
| The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable | |
| Diffusion v2 base model. Use 768 for Stable Diffusion v2. | |
| prediction_type (`str`, *optional*): | |
| The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and | |
| the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2. | |
| num_in_channels (`int`, *optional*, defaults to `None`): | |
| The number of input channels. If `None`, it will be automatically inferred. | |
| scheduler_type (`str`, *optional*, defaults to `"pndm"`): | |
| Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", | |
| "ddim"]`. | |
| load_safety_checker (`bool`, *optional*, defaults to `True`): | |
| Whether to load the safety checker or not. | |
| text_encoder (`CLIPTextModel`, *optional*, defaults to `None`): | |
| An instance of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel) to use, | |
| specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) | |
| variant. If this parameter is `None`, the function will load a new instance of [CLIP] by itself, if | |
| needed. | |
| tokenizer (`CLIPTokenizer`, *optional*, defaults to `None`): | |
| An instance of | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer) | |
| to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by | |
| itself, if needed. | |
| kwargs (remaining dictionary of keyword arguments, *optional*): | |
| Can be used to overwrite load and saveable variables (for example the pipeline components of the | |
| specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` | |
| method. See example below for more information. | |
| Examples: | |
| ```py | |
| >>> from diffusers import StableDiffusionPipeline | |
| >>> # Download pipeline from huggingface.co and cache. | |
| >>> pipeline = StableDiffusionPipeline.from_single_file( | |
| ... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" | |
| ... ) | |
| >>> # Download pipeline from local file | |
| >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt | |
| >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly") | |
| >>> # Enable float16 and move to GPU | |
| >>> pipeline = StableDiffusionPipeline.from_single_file( | |
| ... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", | |
| ... torch_dtype=torch.float16, | |
| ... ) | |
| >>> pipeline.to("cuda") | |
| ``` | |
| """ | |
| # import here to avoid circular dependency | |
| from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| resume_download = kwargs.pop("resume_download", False) | |
| force_download = kwargs.pop("force_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| extract_ema = kwargs.pop("extract_ema", False) | |
| image_size = kwargs.pop("image_size", None) | |
| scheduler_type = kwargs.pop("scheduler_type", "pndm") | |
| num_in_channels = kwargs.pop("num_in_channels", None) | |
| upcast_attention = kwargs.pop("upcast_attention", None) | |
| load_safety_checker = kwargs.pop("load_safety_checker", True) | |
| prediction_type = kwargs.pop("prediction_type", None) | |
| text_encoder = kwargs.pop("text_encoder", None) | |
| tokenizer = kwargs.pop("tokenizer", None) | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False) | |
| pipeline_name = cls.__name__ | |
| file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] | |
| from_safetensors = file_extension == "safetensors" | |
| if from_safetensors and use_safetensors is False: | |
| raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") | |
| # TODO: For now we only support stable diffusion | |
| stable_unclip = None | |
| model_type = None | |
| controlnet = False | |
| if pipeline_name == "StableDiffusionControlNetPipeline": | |
| # Model type will be inferred from the checkpoint. | |
| controlnet = True | |
| elif "StableDiffusion" in pipeline_name: | |
| # Model type will be inferred from the checkpoint. | |
| pass | |
| elif pipeline_name == "StableUnCLIPPipeline": | |
| model_type = "FrozenOpenCLIPEmbedder" | |
| stable_unclip = "txt2img" | |
| elif pipeline_name == "StableUnCLIPImg2ImgPipeline": | |
| model_type = "FrozenOpenCLIPEmbedder" | |
| stable_unclip = "img2img" | |
| elif pipeline_name == "PaintByExamplePipeline": | |
| model_type = "PaintByExample" | |
| elif pipeline_name == "LDMTextToImagePipeline": | |
| model_type = "LDMTextToImage" | |
| else: | |
| raise ValueError(f"Unhandled pipeline class: {pipeline_name}") | |
| # remove huggingface url | |
| for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: | |
| if pretrained_model_link_or_path.startswith(prefix): | |
| pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] | |
| # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained | |
| ckpt_path = Path(pretrained_model_link_or_path) | |
| if not ckpt_path.is_file(): | |
| # get repo_id and (potentially nested) file path of ckpt in repo | |
| repo_id = "/".join(ckpt_path.parts[:2]) | |
| file_path = "/".join(ckpt_path.parts[2:]) | |
| if file_path.startswith("blob/"): | |
| file_path = file_path[len("blob/") :] | |
| if file_path.startswith("main/"): | |
| file_path = file_path[len("main/") :] | |
| pretrained_model_link_or_path = hf_hub_download( | |
| repo_id, | |
| filename=file_path, | |
| cache_dir=cache_dir, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| force_download=force_download, | |
| ) | |
| pipe = download_from_original_stable_diffusion_ckpt( | |
| pretrained_model_link_or_path, | |
| pipeline_class=cls, | |
| model_type=model_type, | |
| stable_unclip=stable_unclip, | |
| controlnet=controlnet, | |
| from_safetensors=from_safetensors, | |
| extract_ema=extract_ema, | |
| image_size=image_size, | |
| scheduler_type=scheduler_type, | |
| num_in_channels=num_in_channels, | |
| upcast_attention=upcast_attention, | |
| load_safety_checker=load_safety_checker, | |
| prediction_type=prediction_type, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| ) | |
| if torch_dtype is not None: | |
| pipe.to(torch_dtype=torch_dtype) | |
| return pipe | |