Spaces:
Runtime error
Runtime error
| import inspect | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| GPT2Tokenizer, | |
| ) | |
| from ...models import AutoencoderKL | |
| from ...schedulers import KarrasDiffusionSchedulers | |
| from ...utils import ( | |
| PIL_INTERPOLATION, | |
| deprecate, | |
| is_accelerate_available, | |
| is_accelerate_version, | |
| logging, | |
| randn_tensor, | |
| ) | |
| from ...utils.outputs import BaseOutput | |
| from ..pipeline_utils import DiffusionPipeline | |
| from .modeling_text_decoder import UniDiffuserTextDecoder | |
| from .modeling_uvit import UniDiffuserModel | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
| def preprocess(image): | |
| warnings.warn( | |
| "The preprocess method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor.preprocess instead", | |
| FutureWarning, | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
| image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| # New BaseOutput child class for joint image-text output | |
| class ImageTextPipelineOutput(BaseOutput): | |
| """ | |
| Output class for joint image-text pipelines. | |
| Args: | |
| images (`List[PIL.Image.Image]` or `np.ndarray`) | |
| List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, | |
| num_channels)`. | |
| text (`List[str]` or `List[List[str]]`) | |
| List of generated text strings of length `batch_size` or a list of list of strings whose outer list has | |
| length `batch_size`. | |
| """ | |
| images: Optional[Union[List[PIL.Image.Image], np.ndarray]] | |
| text: Optional[Union[List[str], List[List[str]]]] | |
| class UniDiffuserPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for a bimodal image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model, which supports | |
| unconditional text and image generation, text-conditioned image generation, image-conditioned text generation, and | |
| joint image-text generation. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. This | |
| is part of the UniDiffuser image representation, along with the CLIP vision encoding. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Similar to Stable Diffusion, UniDiffuser uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel) to encode text | |
| prompts. | |
| image_encoder ([`CLIPVisionModel`]): | |
| UniDiffuser uses the vision portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel) to encode | |
| images as part of its image representation, along with the VAE latent representation. | |
| image_processor ([`CLIPImageProcessor`]): | |
| CLIP image processor of class | |
| [CLIPImageProcessor](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPImageProcessor), | |
| used to preprocess the image before CLIP encoding it with `image_encoder`. | |
| clip_tokenizer ([`CLIPTokenizer`]): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTokenizer) which | |
| is used to tokenizer a prompt before encoding it with `text_encoder`. | |
| text_decoder ([`UniDiffuserTextDecoder`]): | |
| Frozen text decoder. This is a GPT-style model which is used to generate text from the UniDiffuser | |
| embedding. | |
| text_tokenizer ([`GPT2Tokenizer`]): | |
| Tokenizer of class | |
| [GPT2Tokenizer](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2Tokenizer) which | |
| is used along with the `text_decoder` to decode text for text generation. | |
| unet ([`UniDiffuserModel`]): | |
| UniDiffuser uses a [U-ViT](https://github.com/baofff/U-ViT) model architecture, which is similar to a | |
| [`Transformer2DModel`] with U-Net-style skip connections between transformer layers. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image and/or text latents. The | |
| original UniDiffuser paper uses the [`DPMSolverMultistepScheduler`] scheduler. | |
| """ | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| image_processor: CLIPImageProcessor, | |
| clip_tokenizer: CLIPTokenizer, | |
| text_decoder: UniDiffuserTextDecoder, | |
| text_tokenizer: GPT2Tokenizer, | |
| unet: UniDiffuserModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| ): | |
| super().__init__() | |
| if text_encoder.config.hidden_size != text_decoder.prefix_inner_dim: | |
| raise ValueError( | |
| f"The text encoder hidden size and text decoder prefix inner dim must be the same, but" | |
| f" `text_encoder.config.hidden_size`: {text_encoder.config.hidden_size} and `text_decoder.prefix_inner_dim`: {text_decoder.prefix_inner_dim}" | |
| ) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| image_encoder=image_encoder, | |
| image_processor=image_processor, | |
| clip_tokenizer=clip_tokenizer, | |
| text_decoder=text_decoder, | |
| text_tokenizer=text_tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.num_channels_latents = vae.config.latent_channels | |
| self.text_encoder_seq_len = text_encoder.config.max_position_embeddings | |
| self.text_encoder_hidden_size = text_encoder.config.hidden_size | |
| self.image_encoder_projection_dim = image_encoder.config.projection_dim | |
| self.unet_resolution = unet.config.sample_size | |
| self.text_intermediate_dim = self.text_encoder_hidden_size | |
| if self.text_decoder.prefix_hidden_dim is not None: | |
| self.text_intermediate_dim = self.text_decoder.prefix_hidden_dim | |
| self.mode = None | |
| # TODO: handle safety checking? | |
| self.safety_checker = None | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload | |
| # Add self.image_encoder, self.text_decoder to cpu_offloaded_models list | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward` method called. | |
| Note that offloading happens on a submodule basis. Memory savings are higher than with | |
| `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.image_encoder, self.text_decoder]: | |
| cpu_offload(cpu_offloaded_model, device) | |
| if self.safety_checker is not None: | |
| cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload | |
| # Add self.image_encoder, self.text_decoder to cpu_offloaded_models list | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
| from accelerate import cpu_offload_with_hook | |
| else: | |
| raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| if self.device.type != "cpu": | |
| self.to("cpu", silence_dtype_warnings=True) | |
| torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
| hook = None | |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae, self.image_encoder, self.text_decoder]: | |
| _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
| if self.safety_checker is not None: | |
| _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) | |
| # We'll offload the last model manually. | |
| self.final_offload_hook = hook | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def _infer_mode(self, prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents): | |
| r""" | |
| Infer the generation task ('mode') from the inputs to `__call__`. If the mode has been manually set, the set | |
| mode will be used. | |
| """ | |
| prompt_available = (prompt is not None) or (prompt_embeds is not None) | |
| image_available = image is not None | |
| input_available = prompt_available or image_available | |
| prompt_latents_available = prompt_latents is not None | |
| vae_latents_available = vae_latents is not None | |
| clip_latents_available = clip_latents is not None | |
| full_latents_available = latents is not None | |
| image_latents_available = vae_latents_available and clip_latents_available | |
| all_indv_latents_available = prompt_latents_available and image_latents_available | |
| if self.mode is not None: | |
| # Preferentially use the mode set by the user | |
| mode = self.mode | |
| elif prompt_available: | |
| mode = "text2img" | |
| elif image_available: | |
| mode = "img2text" | |
| else: | |
| # Neither prompt nor image supplied, infer based on availability of latents | |
| if full_latents_available or all_indv_latents_available: | |
| mode = "joint" | |
| elif prompt_latents_available: | |
| mode = "text" | |
| elif image_latents_available: | |
| mode = "img" | |
| else: | |
| # No inputs or latents available | |
| mode = "joint" | |
| # Give warnings for ambiguous cases | |
| if self.mode is None and prompt_available and image_available: | |
| logger.warning( | |
| f"You have supplied both a text prompt and image to the pipeline and mode has not been set manually," | |
| f" defaulting to mode '{mode}'." | |
| ) | |
| if self.mode is None and not input_available: | |
| if vae_latents_available != clip_latents_available: | |
| # Exactly one of vae_latents and clip_latents is supplied | |
| logger.warning( | |
| f"You have supplied exactly one of `vae_latents` and `clip_latents`, whereas either both or none" | |
| f" are expected to be supplied. Defaulting to mode '{mode}'." | |
| ) | |
| elif not prompt_latents_available and not vae_latents_available and not clip_latents_available: | |
| # No inputs or latents supplied | |
| logger.warning( | |
| f"No inputs or latents have been supplied, and mode has not been manually set," | |
| f" defaulting to mode '{mode}'." | |
| ) | |
| return mode | |
| # Functions to manually set the mode | |
| def set_text_mode(self): | |
| r"""Manually set the generation mode to unconditional ("marginal") text generation.""" | |
| self.mode = "text" | |
| def set_image_mode(self): | |
| r"""Manually set the generation mode to unconditional ("marginal") image generation.""" | |
| self.mode = "img" | |
| def set_text_to_image_mode(self): | |
| r"""Manually set the generation mode to text-conditioned image generation.""" | |
| self.mode = "text2img" | |
| def set_image_to_text_mode(self): | |
| r"""Manually set the generation mode to image-conditioned text generation.""" | |
| self.mode = "img2text" | |
| def set_joint_mode(self): | |
| r"""Manually set the generation mode to unconditional joint image-text generation.""" | |
| self.mode = "joint" | |
| def reset_mode(self): | |
| r"""Removes a manually set mode; after calling this, the pipeline will infer the mode from inputs.""" | |
| self.mode = None | |
| def _infer_batch_size( | |
| self, | |
| mode, | |
| prompt, | |
| prompt_embeds, | |
| image, | |
| num_images_per_prompt, | |
| num_prompts_per_image, | |
| latents, | |
| prompt_latents, | |
| vae_latents, | |
| clip_latents, | |
| ): | |
| r"""Infers the batch size and multiplier depending on mode and supplied arguments to `__call__`.""" | |
| if num_images_per_prompt is None: | |
| num_images_per_prompt = 1 | |
| if num_prompts_per_image is None: | |
| num_prompts_per_image = 1 | |
| assert num_images_per_prompt > 0, "num_images_per_prompt must be a positive integer" | |
| assert num_prompts_per_image > 0, "num_prompts_per_image must be a positive integer" | |
| if mode in ["text2img"]: | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| # Either prompt or prompt_embeds must be present for text2img. | |
| batch_size = prompt_embeds.shape[0] | |
| multiplier = num_images_per_prompt | |
| elif mode in ["img2text"]: | |
| if isinstance(image, PIL.Image.Image): | |
| batch_size = 1 | |
| else: | |
| # Image must be available and type either PIL.Image.Image or torch.FloatTensor. | |
| # Not currently supporting something like image_embeds. | |
| batch_size = image.shape[0] | |
| multiplier = num_prompts_per_image | |
| elif mode in ["img"]: | |
| if vae_latents is not None: | |
| batch_size = vae_latents.shape[0] | |
| elif clip_latents is not None: | |
| batch_size = clip_latents.shape[0] | |
| else: | |
| batch_size = 1 | |
| multiplier = num_images_per_prompt | |
| elif mode in ["text"]: | |
| if prompt_latents is not None: | |
| batch_size = prompt_latents.shape[0] | |
| else: | |
| batch_size = 1 | |
| multiplier = num_prompts_per_image | |
| elif mode in ["joint"]: | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| elif prompt_latents is not None: | |
| batch_size = prompt_latents.shape[0] | |
| elif vae_latents is not None: | |
| batch_size = vae_latents.shape[0] | |
| elif clip_latents is not None: | |
| batch_size = clip_latents.shape[0] | |
| else: | |
| batch_size = 1 | |
| if num_images_per_prompt == num_prompts_per_image: | |
| multiplier = num_images_per_prompt | |
| else: | |
| multiplier = min(num_images_per_prompt, num_prompts_per_image) | |
| logger.warning( | |
| f"You are using mode `{mode}` and `num_images_per_prompt`: {num_images_per_prompt} and" | |
| f" num_prompts_per_image: {num_prompts_per_image} are not equal. Using batch size equal to" | |
| f" `min(num_images_per_prompt, num_prompts_per_image) = {batch_size}." | |
| ) | |
| return batch_size, multiplier | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
| # self.tokenizer => self.clip_tokenizer | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = self.clip_tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.clip_tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.clip_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.clip_tokenizer.batch_decode( | |
| untruncated_ids[:, self.clip_tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.clip_tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.clip_tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_instruct_pix2pix.StableDiffusionInstructPix2PixPipeline.prepare_image_latents | |
| # Add num_prompts_per_image argument, sample from autoencoder moment distribution | |
| def encode_image_vae_latents( | |
| self, | |
| image, | |
| batch_size, | |
| num_prompts_per_image, | |
| dtype, | |
| device, | |
| do_classifier_free_guidance, | |
| generator=None, | |
| ): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_prompts_per_image | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
| * self.vae.config.scaling_factor | |
| for i in range(batch_size) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| # Scale image_latents by the VAE's scaling factor | |
| image_latents = image_latents * self.vae.config.scaling_factor | |
| if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
| # expand image_latents for batch_size | |
| deprecation_message = ( | |
| f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
| " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
| " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
| " your script to pass as many initial images as text prompts to suppress this warning." | |
| ) | |
| deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
| additional_image_per_prompt = batch_size // image_latents.shape[0] | |
| image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents = torch.cat([image_latents], dim=0) | |
| if do_classifier_free_guidance: | |
| uncond_image_latents = torch.zeros_like(image_latents) | |
| image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) | |
| return image_latents | |
| def encode_image_clip_latents( | |
| self, | |
| image, | |
| batch_size, | |
| num_prompts_per_image, | |
| dtype, | |
| device, | |
| generator=None, | |
| ): | |
| # Map image to CLIP embedding. | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| preprocessed_image = self.image_processor.preprocess( | |
| image, | |
| return_tensors="pt", | |
| ) | |
| preprocessed_image = preprocessed_image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_prompts_per_image | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.image_encoder(**preprocessed_image[i : i + 1]).image_embeds for i in range(batch_size) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.image_encoder(**preprocessed_image).image_embeds | |
| if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
| # expand image_latents for batch_size | |
| deprecation_message = ( | |
| f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
| " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
| " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
| " your script to pass as many initial images as text prompts to suppress this warning." | |
| ) | |
| deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
| additional_image_per_prompt = batch_size // image_latents.shape[0] | |
| image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents = torch.cat([image_latents], dim=0) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| return image_latents | |
| # Note that the CLIP latents are not decoded for image generation. | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| # Rename: decode_latents -> decode_image_latents | |
| def decode_image_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| def prepare_text_latents( | |
| self, batch_size, num_images_per_prompt, seq_len, hidden_size, dtype, device, generator, latents=None | |
| ): | |
| # Prepare latents for the CLIP embedded prompt. | |
| shape = (batch_size * num_images_per_prompt, seq_len, hidden_size) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| # latents is assumed to have shace (B, L, D) | |
| latents = latents.repeat(num_images_per_prompt, 1, 1) | |
| latents = latents.to(device=device, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| # Rename prepare_latents -> prepare_image_vae_latents and add num_prompts_per_image argument. | |
| def prepare_image_vae_latents( | |
| self, | |
| batch_size, | |
| num_prompts_per_image, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = ( | |
| batch_size * num_prompts_per_image, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| # latents is assumed to have shape (B, C, H, W) | |
| latents = latents.repeat(num_prompts_per_image, 1, 1, 1) | |
| latents = latents.to(device=device, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_image_clip_latents( | |
| self, batch_size, num_prompts_per_image, clip_img_dim, dtype, device, generator, latents=None | |
| ): | |
| # Prepare latents for the CLIP embedded image. | |
| shape = (batch_size * num_prompts_per_image, 1, clip_img_dim) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| # latents is assumed to have shape (B, L, D) | |
| latents = latents.repeat(num_prompts_per_image, 1, 1) | |
| latents = latents.to(device=device, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _split(self, x, height, width): | |
| r""" | |
| Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim) into two tensors of shape (B, C, H, W) | |
| and (B, 1, clip_img_dim) | |
| """ | |
| batch_size = x.shape[0] | |
| latent_height = height // self.vae_scale_factor | |
| latent_width = width // self.vae_scale_factor | |
| img_vae_dim = self.num_channels_latents * latent_height * latent_width | |
| img_vae, img_clip = x.split([img_vae_dim, self.image_encoder_projection_dim], dim=1) | |
| img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width)) | |
| img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim)) | |
| return img_vae, img_clip | |
| def _combine(self, img_vae, img_clip): | |
| r""" | |
| Combines a latent iamge img_vae of shape (B, C, H, W) and a CLIP-embedded image img_clip of shape (B, 1, | |
| clip_img_dim) into a single tensor of shape (B, C * H * W + clip_img_dim). | |
| """ | |
| img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1)) | |
| img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1)) | |
| return torch.concat([img_vae, img_clip], dim=-1) | |
| def _split_joint(self, x, height, width): | |
| r""" | |
| Splits a flattened embedding x of shape (B, C * H * W + clip_img_dim + text_seq_len * text_dim] into (img_vae, | |
| img_clip, text) where img_vae is of shape (B, C, H, W), img_clip is of shape (B, 1, clip_img_dim), and text is | |
| of shape (B, text_seq_len, text_dim). | |
| """ | |
| batch_size = x.shape[0] | |
| latent_height = height // self.vae_scale_factor | |
| latent_width = width // self.vae_scale_factor | |
| img_vae_dim = self.num_channels_latents * latent_height * latent_width | |
| text_dim = self.text_encoder_seq_len * self.text_intermediate_dim | |
| img_vae, img_clip, text = x.split([img_vae_dim, self.image_encoder_projection_dim, text_dim], dim=1) | |
| img_vae = torch.reshape(img_vae, (batch_size, self.num_channels_latents, latent_height, latent_width)) | |
| img_clip = torch.reshape(img_clip, (batch_size, 1, self.image_encoder_projection_dim)) | |
| text = torch.reshape(text, (batch_size, self.text_encoder_seq_len, self.text_intermediate_dim)) | |
| return img_vae, img_clip, text | |
| def _combine_joint(self, img_vae, img_clip, text): | |
| r""" | |
| Combines a latent image img_vae of shape (B, C, H, W), a CLIP-embedded image img_clip of shape (B, L_img, | |
| clip_img_dim), and a text embedding text of shape (B, L_text, text_dim) into a single embedding x of shape (B, | |
| C * H * W + L_img * clip_img_dim + L_text * text_dim). | |
| """ | |
| img_vae = torch.reshape(img_vae, (img_vae.shape[0], -1)) | |
| img_clip = torch.reshape(img_clip, (img_clip.shape[0], -1)) | |
| text = torch.reshape(text, (text.shape[0], -1)) | |
| return torch.concat([img_vae, img_clip, text], dim=-1) | |
| def _get_noise_pred( | |
| self, | |
| mode, | |
| latents, | |
| t, | |
| prompt_embeds, | |
| img_vae, | |
| img_clip, | |
| max_timestep, | |
| data_type, | |
| guidance_scale, | |
| generator, | |
| device, | |
| height, | |
| width, | |
| ): | |
| r""" | |
| Gets the noise prediction using the `unet` and performs classifier-free guidance, if necessary. | |
| """ | |
| if mode == "joint": | |
| # Joint text-image generation | |
| img_vae_latents, img_clip_latents, text_latents = self._split_joint(latents, height, width) | |
| img_vae_out, img_clip_out, text_out = self.unet( | |
| img_vae_latents, img_clip_latents, text_latents, timestep_img=t, timestep_text=t, data_type=data_type | |
| ) | |
| x_out = self._combine_joint(img_vae_out, img_clip_out, text_out) | |
| if guidance_scale <= 1.0: | |
| return x_out | |
| # Classifier-free guidance | |
| img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype) | |
| img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype) | |
| text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
| _, _, text_out_uncond = self.unet( | |
| img_vae_T, img_clip_T, text_latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type | |
| ) | |
| img_vae_out_uncond, img_clip_out_uncond, _ = self.unet( | |
| img_vae_latents, | |
| img_clip_latents, | |
| text_T, | |
| timestep_img=t, | |
| timestep_text=max_timestep, | |
| data_type=data_type, | |
| ) | |
| x_out_uncond = self._combine_joint(img_vae_out_uncond, img_clip_out_uncond, text_out_uncond) | |
| return guidance_scale * x_out + (1.0 - guidance_scale) * x_out_uncond | |
| elif mode == "text2img": | |
| # Text-conditioned image generation | |
| img_vae_latents, img_clip_latents = self._split(latents, height, width) | |
| img_vae_out, img_clip_out, text_out = self.unet( | |
| img_vae_latents, img_clip_latents, prompt_embeds, timestep_img=t, timestep_text=0, data_type=data_type | |
| ) | |
| img_out = self._combine(img_vae_out, img_clip_out) | |
| if guidance_scale <= 1.0: | |
| return img_out | |
| # Classifier-free guidance | |
| text_T = randn_tensor(prompt_embeds.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) | |
| img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet( | |
| img_vae_latents, | |
| img_clip_latents, | |
| text_T, | |
| timestep_img=t, | |
| timestep_text=max_timestep, | |
| data_type=data_type, | |
| ) | |
| img_out_uncond = self._combine(img_vae_out_uncond, img_clip_out_uncond) | |
| return guidance_scale * img_out + (1.0 - guidance_scale) * img_out_uncond | |
| elif mode == "img2text": | |
| # Image-conditioned text generation | |
| img_vae_out, img_clip_out, text_out = self.unet( | |
| img_vae, img_clip, latents, timestep_img=0, timestep_text=t, data_type=data_type | |
| ) | |
| if guidance_scale <= 1.0: | |
| return text_out | |
| # Classifier-free guidance | |
| img_vae_T = randn_tensor(img_vae.shape, generator=generator, device=device, dtype=img_vae.dtype) | |
| img_clip_T = randn_tensor(img_clip.shape, generator=generator, device=device, dtype=img_clip.dtype) | |
| img_vae_out_uncond, img_clip_out_uncond, text_out_uncond = self.unet( | |
| img_vae_T, img_clip_T, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type | |
| ) | |
| return guidance_scale * text_out + (1.0 - guidance_scale) * text_out_uncond | |
| elif mode == "text": | |
| # Unconditional ("marginal") text generation (no CFG) | |
| img_vae_out, img_clip_out, text_out = self.unet( | |
| img_vae, img_clip, latents, timestep_img=max_timestep, timestep_text=t, data_type=data_type | |
| ) | |
| return text_out | |
| elif mode == "img": | |
| # Unconditional ("marginal") image generation (no CFG) | |
| img_vae_latents, img_clip_latents = self._split(latents, height, width) | |
| img_vae_out, img_clip_out, text_out = self.unet( | |
| img_vae_latents, | |
| img_clip_latents, | |
| prompt_embeds, | |
| timestep_img=t, | |
| timestep_text=max_timestep, | |
| data_type=data_type, | |
| ) | |
| img_out = self._combine(img_vae_out, img_clip_out) | |
| return img_out | |
| def check_latents_shape(self, latents_name, latents, expected_shape): | |
| latents_shape = latents.shape | |
| expected_num_dims = len(expected_shape) + 1 # expected dimensions plus the batch dimension | |
| expected_shape_str = ", ".join(str(dim) for dim in expected_shape) | |
| if len(latents_shape) != expected_num_dims: | |
| raise ValueError( | |
| f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape" | |
| f" {latents_shape} has {len(latents_shape)} dimensions." | |
| ) | |
| for i in range(1, expected_num_dims): | |
| if latents_shape[i] != expected_shape[i - 1]: | |
| raise ValueError( | |
| f"`{latents_name}` should have shape (batch_size, {expected_shape_str}), but the current shape" | |
| f" {latents_shape} has {latents_shape[i]} != {expected_shape[i - 1]} at dimension {i}." | |
| ) | |
| def check_inputs( | |
| self, | |
| mode, | |
| prompt, | |
| image, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| latents=None, | |
| prompt_latents=None, | |
| vae_latents=None, | |
| clip_latents=None, | |
| ): | |
| # Check inputs before running the generative process. | |
| if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor} but are {height} and {width}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if mode == "text2img": | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if mode == "img2text": | |
| if image is None: | |
| raise ValueError("`img2text` mode requires an image to be provided.") | |
| # Check provided latents | |
| latent_height = height // self.vae_scale_factor | |
| latent_width = width // self.vae_scale_factor | |
| full_latents_available = latents is not None | |
| prompt_latents_available = prompt_latents is not None | |
| vae_latents_available = vae_latents is not None | |
| clip_latents_available = clip_latents is not None | |
| if full_latents_available: | |
| individual_latents_available = ( | |
| prompt_latents is not None or vae_latents is not None or clip_latents is not None | |
| ) | |
| if individual_latents_available: | |
| logger.warning( | |
| "You have supplied both `latents` and at least one of `prompt_latents`, `vae_latents`, and" | |
| " `clip_latents`. The value of `latents` will override the value of any individually supplied latents." | |
| ) | |
| # Check shape of full latents | |
| img_vae_dim = self.num_channels_latents * latent_height * latent_width | |
| text_dim = self.text_encoder_seq_len * self.text_encoder_hidden_size | |
| latents_dim = img_vae_dim + self.image_encoder_projection_dim + text_dim | |
| latents_expected_shape = (latents_dim,) | |
| self.check_latents_shape("latents", latents, latents_expected_shape) | |
| # Check individual latent shapes, if present | |
| if prompt_latents_available: | |
| prompt_latents_expected_shape = (self.text_encoder_seq_len, self.text_encoder_hidden_size) | |
| self.check_latents_shape("prompt_latents", prompt_latents, prompt_latents_expected_shape) | |
| if vae_latents_available: | |
| vae_latents_expected_shape = (self.num_channels_latents, latent_height, latent_width) | |
| self.check_latents_shape("vae_latents", vae_latents, vae_latents_expected_shape) | |
| if clip_latents_available: | |
| clip_latents_expected_shape = (1, self.image_encoder_projection_dim) | |
| self.check_latents_shape("clip_latents", clip_latents, clip_latents_expected_shape) | |
| if mode in ["text2img", "img"] and vae_latents_available and clip_latents_available: | |
| if vae_latents.shape[0] != clip_latents.shape[0]: | |
| raise ValueError( | |
| f"Both `vae_latents` and `clip_latents` are supplied, but their batch dimensions are not equal:" | |
| f" {vae_latents.shape[0]} != {clip_latents.shape[0]}." | |
| ) | |
| if mode == "joint" and prompt_latents_available and vae_latents_available and clip_latents_available: | |
| if prompt_latents.shape[0] != vae_latents.shape[0] or prompt_latents.shape[0] != clip_latents.shape[0]: | |
| raise ValueError( | |
| f"All of `prompt_latents`, `vae_latents`, and `clip_latents` are supplied, but their batch" | |
| f" dimensions are not equal: {prompt_latents.shape[0]} != {vae_latents.shape[0]}" | |
| f" != {clip_latents.shape[0]}." | |
| ) | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| image: Optional[Union[torch.FloatTensor, PIL.Image.Image]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| data_type: Optional[int] = 1, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 8.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| num_prompts_per_image: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_latents: Optional[torch.FloatTensor] = None, | |
| vae_latents: Optional[torch.FloatTensor] = None, | |
| clip_latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds` | |
| instead. Required for text-conditioned image generation (`text2img`) mode. | |
| image (`torch.FloatTensor` or `PIL.Image.Image`, *optional*): | |
| `Image`, or tensor representing an image batch. Required for image-conditioned text generation | |
| (`img2text`) mode. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| data_type (`int`, *optional*, defaults to 1): | |
| The data type (either 0 or 1). Only used if you are loading a checkpoint which supports a data type | |
| embedding; this is added for compatibility with the UniDiffuser-v1 checkpoint. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 8.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. Note that the original [UniDiffuser | |
| paper](https://arxiv.org/pdf/2303.06555.pdf) uses a different definition of the guidance scale `w'`, | |
| which satisfies `w = w' + 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). Used in text-conditioned image generation (`text2img`) mode. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. Used in `text2img` (text-conditioned image generation) and | |
| `img` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are | |
| supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples will be generated. | |
| num_prompts_per_image (`int`, *optional*, defaults to 1): | |
| The number of prompts to generate per image. Used in `img2text` (image-conditioned text generation) and | |
| `text` mode. If the mode is joint and both `num_images_per_prompt` and `num_prompts_per_image` are | |
| supplied, `min(num_images_per_prompt, num_prompts_per_image)` samples will be generated. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for joint | |
| image-text generation. Can be used to tweak the same generation with different prompts. If not | |
| provided, a latents tensor will be generated by sampling using the supplied random `generator`. Note | |
| that this is assumed to be a full set of VAE, CLIP, and text latents, if supplied, this will override | |
| the value of `prompt_latents`, `vae_latents`, and `clip_latents`. | |
| prompt_latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for text | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will be generated by sampling using the supplied random `generator`. | |
| vae_latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will be generated by sampling using the supplied random `generator`. | |
| clip_latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will be generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. Used in text-conditioned | |
| image generation (`text2img`) mode. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. Used in text-conditioned image generation (`text2img`) mode. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.unidiffuser.ImageTextPipelineOutput`] instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.unidiffuser.ImageTextPipelineOutput`] or `tuple`: | |
| [`pipelines.unidiffuser.ImageTextPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
| returning a tuple, the first element is a list with the generated images, and the second element is a list | |
| of generated texts. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet_resolution * self.vae_scale_factor | |
| width = width or self.unet_resolution * self.vae_scale_factor | |
| # 1. Check inputs | |
| # Recalculate mode for each call to the pipeline. | |
| mode = self._infer_mode(prompt, prompt_embeds, image, latents, prompt_latents, vae_latents, clip_latents) | |
| self.check_inputs( | |
| mode, | |
| prompt, | |
| image, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| latents, | |
| prompt_latents, | |
| vae_latents, | |
| clip_latents, | |
| ) | |
| # 2. Define call parameters | |
| batch_size, multiplier = self._infer_batch_size( | |
| mode, | |
| prompt, | |
| prompt_embeds, | |
| image, | |
| num_images_per_prompt, | |
| num_prompts_per_image, | |
| latents, | |
| prompt_latents, | |
| vae_latents, | |
| clip_latents, | |
| ) | |
| device = self._execution_device | |
| reduce_text_emb_dim = self.text_intermediate_dim < self.text_encoder_hidden_size or self.mode != "text2img" | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| # Note that this differs from the formulation in the unidiffusers paper! | |
| # do_classifier_free_guidance = guidance_scale > 1.0 | |
| # check if scheduler is in sigmas space | |
| # scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas") | |
| # 3. Encode input prompt, if available; otherwise prepare text latents | |
| if latents is not None: | |
| # Overwrite individual latents | |
| vae_latents, clip_latents, prompt_latents = self._split_joint(latents, height, width) | |
| if mode in ["text2img"]: | |
| # 3.1. Encode input prompt, if available | |
| assert prompt is not None or prompt_embeds is not None | |
| prompt_embeds = self._encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=multiplier, | |
| do_classifier_free_guidance=False, # don't support standard classifier-free guidance for now | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| else: | |
| # 3.2. Prepare text latent variables, if input not available | |
| prompt_embeds = self.prepare_text_latents( | |
| batch_size=batch_size, | |
| num_images_per_prompt=multiplier, | |
| seq_len=self.text_encoder_seq_len, | |
| hidden_size=self.text_encoder_hidden_size, | |
| dtype=self.text_encoder.dtype, # Should work with both full precision and mixed precision | |
| device=device, | |
| generator=generator, | |
| latents=prompt_latents, | |
| ) | |
| if reduce_text_emb_dim: | |
| prompt_embeds = self.text_decoder.encode(prompt_embeds) | |
| # 4. Encode image, if available; otherwise prepare image latents | |
| if mode in ["img2text"]: | |
| # 4.1. Encode images, if available | |
| assert image is not None, "`img2text` requires a conditioning image" | |
| # Encode image using VAE | |
| image_vae = preprocess(image) | |
| height, width = image_vae.shape[-2:] | |
| image_vae_latents = self.encode_image_vae_latents( | |
| image=image_vae, | |
| batch_size=batch_size, | |
| num_prompts_per_image=multiplier, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| do_classifier_free_guidance=False, # Copied from InstructPix2Pix, don't use their version of CFG | |
| generator=generator, | |
| ) | |
| # Encode image using CLIP | |
| image_clip_latents = self.encode_image_clip_latents( | |
| image=image, | |
| batch_size=batch_size, | |
| num_prompts_per_image=multiplier, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| ) | |
| # (batch_size, clip_hidden_size) => (batch_size, 1, clip_hidden_size) | |
| image_clip_latents = image_clip_latents.unsqueeze(1) | |
| else: | |
| # 4.2. Prepare image latent variables, if input not available | |
| # Prepare image VAE latents in latent space | |
| image_vae_latents = self.prepare_image_vae_latents( | |
| batch_size=batch_size, | |
| num_prompts_per_image=multiplier, | |
| num_channels_latents=self.num_channels_latents, | |
| height=height, | |
| width=width, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| latents=vae_latents, | |
| ) | |
| # Prepare image CLIP latents | |
| image_clip_latents = self.prepare_image_clip_latents( | |
| batch_size=batch_size, | |
| num_prompts_per_image=multiplier, | |
| clip_img_dim=self.image_encoder_projection_dim, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| latents=clip_latents, | |
| ) | |
| # 5. Set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # max_timestep = timesteps[0] | |
| max_timestep = self.scheduler.config.num_train_timesteps | |
| # 6. Prepare latent variables | |
| if mode == "joint": | |
| latents = self._combine_joint(image_vae_latents, image_clip_latents, prompt_embeds) | |
| elif mode in ["text2img", "img"]: | |
| latents = self._combine(image_vae_latents, image_clip_latents) | |
| elif mode in ["img2text", "text"]: | |
| latents = prompt_embeds | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| logger.debug(f"Scheduler extra step kwargs: {extra_step_kwargs}") | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # predict the noise residual | |
| # Also applies classifier-free guidance as described in the UniDiffuser paper | |
| noise_pred = self._get_noise_pred( | |
| mode, | |
| latents, | |
| t, | |
| prompt_embeds, | |
| image_vae_latents, | |
| image_clip_latents, | |
| max_timestep, | |
| data_type, | |
| guidance_scale, | |
| generator, | |
| device, | |
| height, | |
| width, | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # 9. Post-processing | |
| gen_image = None | |
| gen_text = None | |
| if mode == "joint": | |
| image_vae_latents, image_clip_latents, text_latents = self._split_joint(latents, height, width) | |
| # Map latent VAE image back to pixel space | |
| gen_image = self.decode_image_latents(image_vae_latents) | |
| # Generate text using the text decoder | |
| output_token_list, seq_lengths = self.text_decoder.generate_captions( | |
| text_latents, self.text_tokenizer.eos_token_id, device=device | |
| ) | |
| output_list = output_token_list.cpu().numpy() | |
| gen_text = [ | |
| self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True) | |
| for output, length in zip(output_list, seq_lengths) | |
| ] | |
| elif mode in ["text2img", "img"]: | |
| image_vae_latents, image_clip_latents = self._split(latents, height, width) | |
| gen_image = self.decode_image_latents(image_vae_latents) | |
| elif mode in ["img2text", "text"]: | |
| text_latents = latents | |
| output_token_list, seq_lengths = self.text_decoder.generate_captions( | |
| text_latents, self.text_tokenizer.eos_token_id, device=device | |
| ) | |
| output_list = output_token_list.cpu().numpy() | |
| gen_text = [ | |
| self.text_tokenizer.decode(output[: int(length)], skip_special_tokens=True) | |
| for output, length in zip(output_list, seq_lengths) | |
| ] | |
| # 10. Convert to PIL | |
| if output_type == "pil" and gen_image is not None: | |
| gen_image = self.numpy_to_pil(gen_image) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (gen_image, gen_text) | |
| return ImageTextPipelineOutput(images=gen_image, text=gen_text) | |