Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 5,088 Bytes
			
			| e371ddd | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | # Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# A dataset base class that you can easily resize and combine.
# --------------------------------------------------------
import numpy as np
from dust3r.datasets.base.batched_sampler import BatchedRandomSampler
class EasyDataset:
    """ a dataset that you can easily resize and combine.
    Examples:
    ---------
        2 * dataset ==> duplicate each element 2x
        10 @ dataset ==> set the size to 10 (random sampling, duplicates if necessary)
        dataset1 + dataset2 ==> concatenate datasets
    """
    def __add__(self, other):
        return CatDataset([self, other])
    def __rmul__(self, factor):
        return MulDataset(factor, self)
    def __rmatmul__(self, factor):
        return ResizedDataset(factor, self)
    def set_epoch(self, epoch):
        pass  # nothing to do by default
    def make_sampler(self, batch_size, shuffle=True, world_size=1, rank=0, drop_last=True):
        if not (shuffle):
            raise NotImplementedError()  # cannot deal yet
        num_of_aspect_ratios = len(self._resolutions)
        return BatchedRandomSampler(self, batch_size, num_of_aspect_ratios, world_size=world_size, rank=rank, drop_last=drop_last)
class MulDataset (EasyDataset):
    """ Artifically augmenting the size of a dataset.
    """
    multiplicator: int
    def __init__(self, multiplicator, dataset):
        assert isinstance(multiplicator, int) and multiplicator > 0
        self.multiplicator = multiplicator
        self.dataset = dataset
    def __len__(self):
        return self.multiplicator * len(self.dataset)
    def __repr__(self):
        return f'{self.multiplicator}*{repr(self.dataset)}'
    def __getitem__(self, idx):
        if isinstance(idx, tuple):
            idx, other = idx
            return self.dataset[idx // self.multiplicator, other]
        else:
            return self.dataset[idx // self.multiplicator]
    @property
    def _resolutions(self):
        return self.dataset._resolutions
class ResizedDataset (EasyDataset):
    """ Artifically changing the size of a dataset.
    """
    new_size: int
    def __init__(self, new_size, dataset):
        assert isinstance(new_size, int) and new_size > 0
        self.new_size = new_size
        self.dataset = dataset
    def __len__(self):
        return self.new_size
    def __repr__(self):
        size_str = str(self.new_size)
        for i in range((len(size_str)-1) // 3):
            sep = -4*i-3
            size_str = size_str[:sep] + '_' + size_str[sep:]
        return f'{size_str} @ {repr(self.dataset)}'
    def set_epoch(self, epoch):
        # this random shuffle only depends on the epoch
        rng = np.random.default_rng(seed=epoch+777)
        # shuffle all indices
        perm = rng.permutation(len(self.dataset))
        # rotary extension until target size is met
        shuffled_idxs = np.concatenate([perm] * (1 + (len(self)-1) // len(self.dataset)))
        self._idxs_mapping = shuffled_idxs[:self.new_size]
        assert len(self._idxs_mapping) == self.new_size
    def __getitem__(self, idx):
        assert hasattr(self, '_idxs_mapping'), 'You need to call dataset.set_epoch() to use ResizedDataset.__getitem__()'
        if isinstance(idx, tuple):
            idx, other = idx
            return self.dataset[self._idxs_mapping[idx], other]
        else:
            return self.dataset[self._idxs_mapping[idx]]
    @property
    def _resolutions(self):
        return self.dataset._resolutions
class CatDataset (EasyDataset):
    """ Concatenation of several datasets 
    """
    def __init__(self, datasets):
        for dataset in datasets:
            assert isinstance(dataset, EasyDataset)
        self.datasets = datasets
        self._cum_sizes = np.cumsum([len(dataset) for dataset in datasets])
    def __len__(self):
        return self._cum_sizes[-1]
    def __repr__(self):
        # remove uselessly long transform
        return ' + '.join(repr(dataset).replace(',transform=Compose( ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))', '') for dataset in self.datasets)
    def set_epoch(self, epoch):
        for dataset in self.datasets:
            dataset.set_epoch(epoch)
    def __getitem__(self, idx):
        other = None
        if isinstance(idx, tuple):
            idx, other = idx
        if not (0 <= idx < len(self)):
            raise IndexError()
        db_idx = np.searchsorted(self._cum_sizes, idx, 'right')
        dataset = self.datasets[db_idx]
        new_idx = idx - (self._cum_sizes[db_idx - 1] if db_idx > 0 else 0)
        if other is not None:
            new_idx = (new_idx, other)
        return dataset[new_idx]
    @property
    def _resolutions(self):
        resolutions = self.datasets[0]._resolutions
        for dataset in self.datasets[1:]:
            assert tuple(dataset._resolutions) == tuple(resolutions)
        return resolutions
 |