File size: 6,455 Bytes
5ca3a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilities needed for the inference
# --------------------------------------------------------
import tqdm
import torch
from mini_dust3r.utils.device import to_cpu, collate_with_cat
from mini_dust3r.utils.misc import invalid_to_nans
from mini_dust3r.utils.geometry import depthmap_to_pts3d, geotrf
from mini_dust3r.utils.image import ImageDict
from mini_dust3r.model import AsymmetricCroCo3DStereo

from typing import Literal, TypedDict, Optional
from jaxtyping import Float32


class Dust3rPred1(TypedDict):
    pts3d: Float32[torch.Tensor, "b h w c"]
    conf: Float32[torch.Tensor, "b h w"]


class Dust3rPred2(TypedDict):
    pts3d_in_other_view: Float32[torch.Tensor, "b h w c"]
    conf: Float32[torch.Tensor, "b h w"]


class Dust3rResult(TypedDict):
    view1: ImageDict
    view2: ImageDict
    pred1: Dust3rPred1
    pred2: Dust3rPred2
    loss: Optional[int]


def _interleave_imgs(img1, img2):
    res = {}
    for key, value1 in img1.items():
        value2 = img2[key]
        if isinstance(value1, torch.Tensor):
            value = torch.stack((value1, value2), dim=1).flatten(0, 1)
        else:
            value = [x for pair in zip(value1, value2) for x in pair]
        res[key] = value
    return res


def make_batch_symmetric(batch):
    view1, view2 = batch
    view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1))
    return view1, view2


def loss_of_one_batch(
    batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None
):
    view1, view2 = batch
    for view in batch:
        for name in (
            "img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres".split()
        ):  # pseudo_focal
            if name not in view:
                continue
            view[name] = view[name].to(device, non_blocking=True)

    if symmetrize_batch:
        view1, view2 = make_batch_symmetric(batch)

    with torch.cuda.amp.autocast(enabled=bool(use_amp)):
        pred1, pred2 = model(view1, view2)

        # loss is supposed to be symmetric
        with torch.cuda.amp.autocast(enabled=False):
            loss = (
                criterion(view1, view2, pred1, pred2) if criterion is not None else None
            )

    result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss)
    return result[ret] if ret else result


@torch.no_grad()
def inference(
    pairs: list[tuple[ImageDict, ImageDict]],
    model: AsymmetricCroCo3DStereo,
    device: Literal["cpu", "cuda", "mps"],
    batch_size: int = 8,
    verbose: bool = True,
) -> Dust3rResult:
    if verbose:
        print(f">> Inference with model on {len(pairs)} image pairs")
    result = []

    # first, check if all images have the same size
    multiple_shapes = not (check_if_same_size(pairs))
    if multiple_shapes:  # force bs=1
        batch_size = 1

    for i in tqdm.trange(0, len(pairs), batch_size, disable=not verbose):
        res: Dust3rResult = loss_of_one_batch(
            collate_with_cat(pairs[i : i + batch_size]), model, None, device
        )
        result.append(to_cpu(res))

    result = collate_with_cat(result, lists=multiple_shapes)

    return result


def check_if_same_size(pairs):
    shapes1 = [img1["img"].shape[-2:] for img1, img2 in pairs]
    shapes2 = [img2["img"].shape[-2:] for img1, img2 in pairs]
    return all(shapes1[0] == s for s in shapes1) and all(
        shapes2[0] == s for s in shapes2
    )


def get_pred_pts3d(gt, pred, use_pose=False):
    if "depth" in pred and "pseudo_focal" in pred:
        try:
            pp = gt["camera_intrinsics"][..., :2, 2]
        except KeyError:
            pp = None
        pts3d = depthmap_to_pts3d(**pred, pp=pp)

    elif "pts3d" in pred:
        # pts3d from my camera
        pts3d = pred["pts3d"]

    elif "pts3d_in_other_view" in pred:
        # pts3d from the other camera, already transformed
        assert use_pose is True
        return pred["pts3d_in_other_view"]  # return!

    if use_pose:
        camera_pose = pred.get("camera_pose")
        assert camera_pose is not None
        pts3d = geotrf(camera_pose, pts3d)

    return pts3d


def find_opt_scaling(
    gt_pts1,
    gt_pts2,
    pr_pts1,
    pr_pts2=None,
    fit_mode="weiszfeld_stop_grad",
    valid1=None,
    valid2=None,
):
    assert gt_pts1.ndim == pr_pts1.ndim == 4
    assert gt_pts1.shape == pr_pts1.shape
    if gt_pts2 is not None:
        assert gt_pts2.ndim == pr_pts2.ndim == 4
        assert gt_pts2.shape == pr_pts2.shape

    # concat the pointcloud
    nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2)
    nan_gt_pts2 = (
        invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None
    )

    pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2)
    pr_pts2 = (
        invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None
    )

    all_gt = (
        torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1)
        if gt_pts2 is not None
        else nan_gt_pts1
    )
    all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1

    dot_gt_pr = (all_pr * all_gt).sum(dim=-1)
    dot_gt_gt = all_gt.square().sum(dim=-1)

    if fit_mode.startswith("avg"):
        # scaling = (all_pr / all_gt).view(B, -1).mean(dim=1)
        scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
    elif fit_mode.startswith("median"):
        scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values
    elif fit_mode.startswith("weiszfeld"):
        # init scaling with l2 closed form
        scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
        # iterative re-weighted least-squares
        for iter in range(10):
            # re-weighting by inverse of distance
            dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1)
            # print(dis.nanmean(-1))
            w = dis.clip_(min=1e-8).reciprocal()
            # update the scaling with the new weights
            scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1)
    else:
        raise ValueError(f"bad {fit_mode=}")

    if fit_mode.endswith("stop_grad"):
        scaling = scaling.detach()

    scaling = scaling.clip(min=1e-3)
    # assert scaling.isfinite().all(), bb()
    return scaling